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Abstract

A GL(2,R)-structure on a smooth manifold of dimension n+1 corresponds to a distri-

bution of non-degenerate rational normal cones over the manifold. Such a structure

is called k-integrable if there exist many foliations by submanifolds of dimension k

whose tangent spaces are spanned by vectors in the cones.

This structure was first studied by Bryant (n = 3 and k = 2). The work included

here (n = 4 and k = 2, 3) was suggested by Ferapontov, et al., who showed that the

cases (n = 4, k = 2) and (n = 4, k = 3) can arise from integrability of second-order

PDEs via hydrodynamic reductions.

Cartan–Kähler analysis for (n = 4, k = 3) leads to a complete classification of

local structures into 55 equivalence classes determined by the value of an essential

9-dimensional representation of torsion for the GL(2,R)-structure. These classes are

described by the factorization root-types of real binary octic polynomials. Each of

these classes must arise from a PDE, but many of the PDEs remain to be identified.

Also, we study the local problem for n ≥ 5 and k = 2, 3 and conjecture that

similar classifications also exist for these cases; however, the most interesting results

are essentially unique to degree 4. The approach is that of moving frames, using

Cartan’s method of equivalence, the Cartan–Kähler theorem, and Cartan’s structure

theorem.
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Introduction

In the first few decades of the twentieth century, Élie Cartan developed several

general methods to analyze differential-geometric objects that arise by specifying a

structure on the tangent bundle of a manifold. The method of the moving frame,

wherein a frame is fixed that respects the specified structure, provides an efficient

means to calculate quantities relating to the structure. The method of equivalence

and Cartan’s structure theorem allow one to determine the local freedom of such a

structure. If additional restrictions are placed on the structure (such as the existence

of special submanifolds), they are usually equivalent to an overdetermined system of

partial differential equations; the Cartan–Kähler theorem and its corollaries supply

efficient algorithms to determine the existence and abundance of solutions to these

PDEs. For all of these methods, the differential calculus of exterior forms provides the

most efficient and most aesthetically satisfying language. Collectively, these methods

comprise the subject “Exterior Differential Systems.” The canonical reference for this

subject is [BCG+91], written by many of the subject’s main proponents during the

end of the twentieth century.

Using these tools (and little else), we set forth to study the integrability of

GL(2,R)-structures. To specify a GL(2,R)-structure is to specify a smooth field

of rational normal cones on M . That is, a GL(2,R)-structure is a choice of non-

degenerate P1 ⊂ PTpM that varies smoothly with p ∈ M . There are two notions

of integrability for a GL(2,R)-structure over M , but they both correspond to the
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existence of surfaces Σ ⊂ M such that TpΣ is either spanned by or tangent to vec-

tors in the rational normal cone. These definitions are developed in Chapter 1 and

Chapter 3.

GL(2,R)-structures have arisen in three notable contexts. First, as part of a

program to complete and correct Berger’s list of Riemannian and torsion-free affine

holonomy, Bryant sought in 1991 to construct manifolds of dimension 4 with torsion-

free affine holonomy of GL(2,R) and SL(2,R) [Bry91]. His approach naturally pro-

duces a GL(2,R)-structure on the tangent bundle, and Bryant showed that the ex-

istence of these holonomies is tied to integrability of this structure. At that time

Bryant also noted a link between this GL(2,R)-structure and a path-geometric in-

terpretation of fourth-order ODEs in a single variable, effectively continuing work of

Chern and Cartan, [Che40] and [Car41]. This work on ODEs has continued, with

many interesting results appearing recently in Europe from the perspective of either

GL(2,R) geometry or conformal CO(3) geometry [Dou01] [DT06] [GN06] [CS07]

[GN07] [Nur07] [BN07] [GN09]. Most relevant to our current study, a GL(2,R)-

structure was recently discovered by Ferapontov and others in [FHK07]. There it is

shown that certain classical PDEs of second order give rise to GL(2,R)-structures

on naturally defined manifolds of dimension 5. Strikingly, the integrability condi-

tions for the PDEs correspond exactly to the geometric notion of integrability for

the GL(2,R)-structure.

This dissertation examines the notion of GL(2,R) integrability that arises in this

last case. The PDE context for the problem is outlined in Chapter 1, which mostly

serves as a summary of the relevant results from [FHK07]. In Chapter 2 the aforemen-

tioned techniques of Cartan are summarized for later use. Notation is established in

Chapter 3, where the relevant fiber bundles and representation theory are introduced

and k-integrability of a degree-n GL(2,R) structure over a manifold of dimension

n+1 is defined. In Chapter 4 we restrict our attention to dimension 5 (degree 4), the
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case that arises in [FHK07]. Using Cartan’s method of equivalence, we find a global

coframing for a GL(2,R)-structure of degree 4 that is canonical but not torsion-free.

Imposing the integrability conditions in Chapter 5 and Chapter 6, we use the Cartan–

Kähler machinery to show that a particular irreducible 9-dimensional representation

of torsion uniquely characterizes local 3-integrable GL(2,R)-structures of degree 4

that are also 2-integrable. Chapter 7 contains some simple technical observations

regarding the algebraic behavior of this irreducible representation. Encountering ex-

traordinary luck in Chapter 8, we are able to use those technical observations to

completely classify GL(2,R)-structures of degree 4 that are both 2- and 3-integrable

into 55 equivalence classes, corresponding to the factorization root-types of real bi-

nary octics. In some cases, the structure equations are integrated to give an example

of each type in local coordinates. Chapter 9 completes the picture of integrability in

degree 4, as we determine that all of the 55 classes are locally embeddable into the

symplectic bundle over the Lagrangian Grassmannian; the existence of such an em-

bedding indicates that the structure arises from a PDE as described in [FHK07]. In

Chapters 10 and beyond, we use the same methods to examine GL(2,R)-structures

in higher degrees. A global, canonical coframing is obtained, and some interesting

integrability and classification results arise, but their meaning is not yet clear.

It is well-known that Cartan’s methods can lead to computational madness, and

it appears that GL(2,R)-structures are particularly afflicted. As with [Bry91] and

[FHK07], the majority of results contained herein would be impossible but for the

uncanny speed and accuracy of computer algebra software. The bulk of the results

here were obtained using Maple versions 9, 9.5, 10, 11, and 12 for Linux and occa-

sionally verified using Macaulay2 version 1.1. In order to provide reasonable evidence

for my assertions, I have attempted to clearly lay out the nature of the computa-

tions necessary for each proof—most of them are “merely” determining solvability

of linear systems—but the computational details are generally incomprehensible and

3



thus uninformative. The most striking results regarding classification of 3-integrable

structures are possible only because of the unique properties of the matrix J . The en-

tries of this matrix are included in Appendix A; that data should allow the reader to

verify many of the results simply by choosing a particular binary octic and applying

elementary linear algebra.

In the context of integrable PDEs, this project has a broader purpose. Our overall

understanding of integrability phenomena is extremely limited. Since integrability

is essential to the study of PDEs in the physical sciences, this situation is singularly

unsatisfying in contemporary mathematics. To a geometer the preferred outcome

is to have a coordinate-invariant means to decide whether a PDE is integrable by

studying the symmetries or invariants of an associated geometric structure. For

the class of PDEs that are integrable by a three-parameter family of hydrodynamic

reductions, this goal is nearly achieved by combining [FHK07] and this dissertation.

Whether this classification can be extended to second-order PDEs involving lower

derivatives is still unclear, but it is the next reasonable question to address.
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1

Background

This chapter is a summary of the relevant PDE theory. This chapter begins by

reviewing the correspondence between C1 functions and graphs in jet space along

with the naturally-arising symplectic structure. Additional consequences are noted in

the case of second-order PDEs, and finally some results of [FHK07] are summarized

to provide motivation.

1.1 Functions and Jets

Suppose that u : R3 → R is a C1 function and that R3 has coordinates ξ =

(ξ1, ξ2, ξ3). The function u ∈ C1(R3) gives rise to a section of the 1-jet space

J = R(ξ1, ξ2, ξ3, z, p1, p2, p3). This section may be regarded as a graph with co-

ordinates (ξ1, ξ2, ξ3, u(ξ), u1(ξ), u2(ξ), u3(ξ)) where ui = ∂u
∂ξi .

Conversely, suppose N ⊂ J is a three-dimensional submanifold that projects

onto R3. It is possible that N is the jet-graph of some C1 function u; the necessary

and sufficient condition can be described neatly in terms of an EDS: Consider the

ideal I in the exterior algebra over J that is generated by {dz − pidξi, dpi ∧ dξi}.

(Note the use of the repeated-index summation convention, which is ubiquitous in
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this dissertation.) In the language of exterior differential systems, a tangent plane

π ∈ Gr(TJ) is called an integral element if ψ|π = 0 for all ψ ∈ I, and a submanifold

N is called integral to I if N∗(ψ) = 0 for all ψ ∈ I. This leads us to one of the most

elementary observations in the subject of exterior differential systems [GS87].

Lemma 1.1. Suppose N is a submanifold of J of dimension three. The following

are equivalent:

1. N is locally the jet-graph of the function u : ξ 7→ N∗(z).

2. N is an integral submanifold of I and N∗(dξ1 ∧ dξ2 ∧ dξ3) 6= 0.

The non-degeneracy condition N∗(dξ1 ∧ dξ2 ∧ dξ3) 6= 0 is needed so that the

projection N → R3 is a submersion. If this submersion is onto, then the function

u is defined globally on R3, in which case N is actually a section of J. A section

satisfying the criteria of Lemma 1.1 is said to be holonomic.

Given a particular N and any z0 ∈ R, the translated submanifold N+z0 is locally

the graph of the translated function u + z0. So elements of C1/R (by addition of

constants) correspond to submanifolds of J = J/(z) = R(ξ1, ξ2, ξ3, p1, p2, p3) that

are integral to the ideal I spanned by {dpi ∧ dξi} in the exterior algebra over J.

Readers familiar with exterior differential systems should recognize this reduction as

the contraction of I and J along the infinitesimal symmetry ∂
∂z

.

The global two-form σ = dpi ∧ dξi gives the manifold J a natural symplec-

tic structure. In other words, there is a principal bundle over J that has fiber

Sp(3,R) = {A ∈ GL(6,R) : σ(Av,Aw) = σ(v, w) ∀v, w ∈ R6}; this group provides

the infinitesimal automorphisms on J that preserve the structure σ. Indeed, writing

(
dξ̃
dp̃

)
=

(
B C
A D

)(
dξ
dp

)
(1.1)

6



with the condition that dp̃i ∧ dξ̃i = 0 = dpi ∧ dξi forces the block-matrix definition

of Sp(3,R): BA = (BA)T , CD = (CD)T , and CA−BD = I.

With a symplectic structure available, particular tangent planes are naturally

distinguished:

Definition 1.2 (Lagrangian planes). The Lagrangian Grassmannian is

Λ = {π ∈ Gr3(R6) : σ|π = 0}. (1.2)

The Lagrangian Grassmann bundle over J is

Gr3(TJ, σ) = {π ∈ Gr3(TJ) : σ|π = 0} = J× Λ. (1.3)

The open Lagrangian Grassmannian is

Λo = {π ∈ Λ : dξ1 ∧ dξ2 ∧ dξ3|π 6= 0} ⊂ Λ. (1.4)

The open Lagrangian Grassmann bundle over J is

Gro3(TJ, σ) = {π ∈ Gr3(TJ, σ) : dξ1 ∧ dξ2 ∧ dξ3|π 6= 0} = J× Λo. (1.5)

By the definition of σ, the 6-dimensional manifold Λ is exactly the space of 3-

planes integral to I over a specified point in J. Moreover, Sp(3,R) is a principal

bundle over Λ with fiber

P ∼=
{(

B C
0 B−1

)
: B ∈ GL(3,R), C = CT

}
,

as P is the subgroup of Sp(3,R) that preserves a particular integral element. The

bundle Sp(3,R) restricts to Λo, an open set in Λ.

With these objects in hand, Lemma 1.1 can be refined in the following manner:

7



Figure 1.1: The reduced jet-graph of a C2 function u and a tangent plane repre-
sented by U , the Hessian matrix of u.

Lemma 1.3. Let N ⊂ J be a submanifold of dimension three. The following are

equivalent:

1. N is locally the reduced jet-graph of a function u : R3 → R such that ui =

N∗(pi).

2. N is locally the graph of ∇u : R3 → R3 for some u : R3 → R.

3. TN ∈ Γ(Gro3(TJ, σ))

4. T(ξ,p)N ∈ Λo for all (ξ, p) ∈ N .

Lemma 1.3 states that Λo is exactly the set of integral elements on which the

desired non-degeneracy condition, dξ1∧dξ2∧dξ3 6= 0, holds. An element π ∈ Λo may

be uniquely defined by a basis {X1, X2, X3} where Xi = ∂
∂ξi +Uij

∂
∂pj

. Moreover, since

π is integral to I, we may compute 0 =
∑

i dξ
i ∧ dpi(Xj, Xk) = Ujk − Ukj. That is,

on π ∈ Λo we may write dpi = Uijdξ
j, and the symmetric matrix U uniquely defines

π. In other words, if u ∈ C2 is a function corresponding to N where u(ξ) = z|N(ξ)

and ui(ξ) = pi|N(ξ), then the matrix U is the Hessian of u: Uij(ξ) = ∂2

∂ξi∂ξj u(ξ). See

Figure 1.1. Therefore, U : Λo → Sym2(R3) is a diffeomorphism from the space of

non-degenerate integral elements to the space of symmetric matrices.

8



1.2 The Rational Normal and Veronese Varieties

For future application we now briefly recall some elementary structures from algebraic

geometry. An excellent reference for this material is [Har95], particularly Chapters

1, 2, and 18. For concreteness and direct application to our purpose, we fix the

dimensions so that the target space has projective dimension 5; however all of these

definitions extend easily to arbitrary dimension.

Recall that a variety is said to be “non-degenerate” if no proper linear subspace

contains it. This condition is sometimes called “normal,” but this usage conflicts

with a more modern and more common usage that is related to the local ring of a

variety. Nonetheless, the archaic usage it lends its name to a fundamental object

in algebraic geometry, the rational normal curve. The rational normal curve is the

image of the regular map P(R2)→ P(R6) given by

[a, b] 7→ [a5, a4b, a3b2, a2b3, ab4, b5]. (1.6)

The de-projectivized version in R6 is called the rational normal cone, denoted C. We

also use the term “rational normal cone” to refer to any cone arising from this one by

a projective automorphism of R6; in particular, we apply a diagonal basis change to

R6 from Chapter 3 onwards. This definition is unambiguous, as all non-degenerate

curves of degree n in P(Rn+1) are PGL(Rn+1)-congruent. For our purposes, the key

fact about rational normal cones is Lemma 1.4, which arises from the simple fact

that PGL(2,R) is the automorphism group of P(R2) [Har95, Example 10.8].

Lemma 1.4. The symmetry group of C ⊂ Rn+1 is GL(2,R) ⊂ GL(n+1,R).

Of course, the symmetry group GL(2,R) of C is not any of the trivial block-

diagonal embeddings of GL(2,R) into GL(n+1,R), since C is non-degenerate.

Given a rational normal cone C, a k-dimensional linear subspace L ⊂ R6 is

called k-secant if L ∩ C is a set of k distinct lines, which therefore span L. See

9



Figure 1.2: A rational normal cone in R3 with a bi-secant plane.

Figure 1.2. Note that this terminology is related to but distinct from the secant

variety introduced in [Har95]. We are particularly interested in the case k = 2 (bi-

secant) and k = 3 (tri-secant). The k-secant condition on Grk(Vn) is locally closed

for k < n, but it is open for k = n (that is, for subspaces that are co-dimension one

in Vn).

The Veronese variety generalizes the rational normal curve. For our purposes, it

is defined as the image of the regular map P(R3)→ P(Sym2(R3)) given by

[Z1, Z2, Z3] 7→

Z1Z1 Z1Z2 Z1Z3

Z2Z1 Z2Z2 Z2Z3

Z3Z1 Z3Z2 Z3Z3

 (1.7)

The de-projectivized version of the Veronese variety is the Veronese cone, and it can

also be described in a coordinate-free manner as the set of matrices in Sym2(R3) with

rank at most 1. In the complex case, it is easy to check that the intersection of a

generic hyperplane with the 3-dimensional Veronese cone produces a 2-dimensional

rational normal cone in C6 = Sym2(C3). We need the real case, which takes a little

detail to describe accurately. Consider an intersection of a hyperplane with with the
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Veronese cone. This intersection is given by the polynomial equation in Z1, Z2, Z3

such as

a11(Z1)2 + a12Z1Z2 + a13Z1Z3 + a22(Z2)2 + a23Z2Z3 + a33(Z3)2 = 0. (1.8)

Depending on the coefficients aij, Equation (1.8) may or may not have real solu-

tions. If Equation (1.8) has real solutions, then the solution in P(R3) is a real

quadric surface. This quadric may or may not be degenerate. The existence of real

non-degenerate solutions is an open condition on the hyperplane in the topology of

Gr3(R6). If this condition is satisfied, we say that the hyperplane defining {aij} is

pure. The exact algebraic condition for purity need not concern us and can be found

in many places such as [ZKR96]. The relevant fact is that a pure hyperplane in

Sym2(R3) intersects the Veronese cone in a rational normal cone, and every rational

normal cone in Sym2(R3) can be written this way.

Returning to the symplectic jet-space geometry of the previous section, there is a

natural and Sp(3,R)-invariant distribution, V, of Veronese cones over Λo with fiber

Vπ = {$ ∈ TπΛo : rank dUπ($) ≤ 1}. (1.9)

1.3 Motivation via Second-Order PDEs

Consider now a partial differential equation of the form

F (u11, u12, u13, u22, u23, u33) = 0 (1.10)

where u : R3 → R is a C2 function and uij = ∂2

∂ξi∂ξj u = uji. In the context of

Lemma 1.3, F (U) = 0 is a closed condition defining a subset of Λo.

Suppose π ∈ Λo with F (π) = 0, and suppose additionally that the non-degeneracy

condition dF (π) 6= 0 holds. By the implicit function theorem, there is a 5-dimensional

manifold M through π that is the intersection of F−1(0) with an open set in Λo.

11



Hence, we can informally state that F (U) = 0 locally defines a 5-dimensional sub-

manifold M ⊂ Λo near generic π ∈ F−1(0). If TπM ⊂ TπΛo is pure, then it intersects

the Veronese variety Vπ ⊂ TπΛo in a 2-dimensional rational normal cone Cp. This

discussion may be summarized as follows:

Theorem 1.5. Let F : Λo → R be a smooth function, and suppose π ∈ Λo such that

F (π) = 0, dF (π) 6= 0, and ker(dF (π)) is pure as a hyperplane in Tπ Λo = Sym2(R3).

Then there is an open 5-dimensional submanifold M ⊂ Λo defined by F |M = 0 in a

neighborhood of π, and M admits a distribution C of rational normal cones. Equiv-

alently, M admits a principal right GL(2,R) bundle B → M that is a reduction of

the co-frame bundle over M to the stabilizer of C.

The statement regarding GL(2,R) bundles follows simply because the stabi-

lizer group of Cp is exactly GL(2,R), as in Lemma 1.4. This equivalence between

GL(2,R)-structures and fields of rational normal cones is explicitly verified after

notation is fixed for the co-frame bundle of M in Chapter 3.

A distribution of cones yields a notion of integrability by foliation.

Definition 1.6 (k-Integrability). A submanifold N is also called k-secant if TqN is a

k-secant subspace for all q ∈ N . A principal right GL(2,R) bundle (or the associated

distribution of cones C) over a manifold M is called k-integrable if through every

p ∈ M and every k-secant subspace L ⊂ TpM , there passes a k-secant submanifold

N such that TpN = L.

[FHK07] demonstrates an intriguing relationship between these foliations and a

certain class of PDE. We now summarize their main result, which serves as motivation

for this project.
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Theorem 1.7 ([FHK07]). Consider a PDE of the form F (uij) = 0, 1 ≤ i, j ≤ 3,

and a corresponding 5-dimensional manifold M ⊂ Λo defined by F−1(0). Then

1. The natural GL(2,R)-structure over M is 2-integrable.

2. The PDE F is integrable via hydrodynamic reductions if and only if the natural

GL(2,R)-structure over M is 3-integrable.

PDEs that are integrable by means of hydrodynamic reductions have been ex-

tensively studied in a variety of physical contexts, ranging from general relativity to

the dynamics of gas chromatography [Kod88] [KG89] [Tsa90] [GT96] [Tsa93] [Tsa00]

[BLP03] [Pav03] [FO07]. A complete discussion of this integrability theory and the

applications of hydrodynamic reductions is beyond the scope of this dissertation;

[FHK07] provides sources for the interested reader. [FK03] serves as a collection

of interesting examples, such as uyy = uxt + 1
2
u2
xx (the first flow of dispersionless

Kadomtsev–Petviashvili equation), uxx + uyy = eutt (the Boyer-Finley equation) and

many more, including various integrable hierarchies.

One hopes to integrate these PDEs by stipulating that the solution function u

(and its derivatives) may be written as u(R1, . . . , Rk) for an a priori unknown number

of functions R1(ξ), . . . , Rk(ξ) whose derivatives admit the “commuting” relations

∂

∂ξ2
Ri = ρi2(R)

∂

∂ξ1
Ri,

∂

∂ξ3
Ri = ρi3(R)

∂

∂ξ1
Ri (1.11)

which also imply

1

ρi2 − ρ
j
2

∂ρi2
∂Rj

=
1

ρi3 − ρ
j
3

∂ρi3
∂Rj

, ∀i 6= j. (1.12)

The system of PDEs in Equations (1.11) and (1.12) is called a k-component system

of hydrodynamic type. The functions Ri are sometimes called Riemann invariants.

Solving a PDE using this assumption is called a k-parameter hydrodynamic reduction
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of the PDE. A PDE is called integrable via hydrodynamic reductions if, for any k, it

admits infinitely many k-parameter hydrodynamic reductions that are parametrized

by k functions of one variable. For a PDE on u : R3 → R, the existence of k-

parameter hydrodynamic reductions is trivial for k > 3. Hence, the existence of

the 3-parameter hydrodynamic reductions is sufficient to provide integrability of the

PDE.

This process seems rather ad hoc, but it applies to a wealth of examples, as

demonstrated in the above references. Indeed, [FHK07] also shows that the action of

Sp(3), which rewrites F (U) = 0 in terms of new coordinates on Λo, produces an open

orbit of such PDEs. (This result is verified in a more precise manner in Chapter 9.)

From the geometric perspective, it is clear that describing the local flexibility of

2- and 3-integrable GL(2,R)-structures over 5-manifolds would be useful for under-

standing the geometric content of this method, and a complete local classification

of 2- and 3-integrable structures would be even better. These are the primary goals

of this dissertation. After they are achieved in Chapters 4 through 9, our atten-

tion turns to the generalization of k-integrable GL(2,R)-structures over Mn+1 for

arbitrary n and k.
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2

Techniques of Cartan

As mentioned in the Introduction, the results demonstrated in this dissertation are

proven using Cartan’s method of moving frames, Cartan’s method of equivalence,

the Cartan–Kähler theorem, and Cartan’s generalization of Lie’s third fundamental

theorem, which is called “Cartan’s structure theorem” hereafter.

The method of the moving frame and the Cartan–Kähler theorem are now fa-

miliar to a wide audience, and excellent textbooks are available—notably [BCG+91]

and [IL03]. These topics are not reviewed here, as a reasonable overview would un-

doubtedly expand to a text unto itself. The primary technique from Cartan–Kähler

theory used in this project is Cartan’s test for involutivity of linear Pfaffian systems.

The method of equivalence enjoys well-written coverage in [Gar89], [IL03], and

[BGG03]. These references seem only known to a fairly small circle of researchers;

however, the method is generally understood in some form by many differential

geometers, often in the related contexts of affine connections or gauge groups.

Unfortunately, beyond Cartan’s original work in [Car04], complete expositions

of Cartan’s structure theorem appear non-existent. Though summarizing comments

are made in literature such as [Bry01], there does not appear to be a standard
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review of the complete classical version of this theorem. A modern descendant of

the structure theorem, interpreted as integration of Lie algebroids to foliations by

topological groupoids, has finally been established in [CF03], and there is a rich study

of algebroids, groupoids, and pseudo-groups that can now subsume most of Cartan’s

original theorem.

This chapter outlines these two techniques of Cartan, both to sketch the impor-

tant ideas for uninitiated readers and to fix terminology used in the main results of

this project.

2.1 Tautological Forms and Connections

In this chapter, M is an m-dimensional manifold and V = Rm. The co-frame bundle

F over M is the bundle whose fiber is Fp = {up : TpM
∼→ V }, the set of all vector-

space isomorphisms from the tangent space to V . We can write any element of F in

components as u = (ui), and it is important to note that u1 ∧ · · · ∧ um 6= 0, since u

is an isomorphism on each fiber.

Note that there is a right action of GL(V ) by u · g = g−1 ◦ u that acts smoothly,

simply and transitively on the fibers. Hence, F(M) is a principal right GL(V )

bundle, as shown in the following diagram:

GL(V ) −→F(M) 3 u : TpM → Vyπ y– (2.1)

M 3 p = π(u)

For any u ∈ F , there is a tautological 1-form ωu : TuF → V , defined as ω ∈

Γ(T∗F ⊗ V ) such that ωu(z) = u(π∗(z)) for any z ∈ TuF . Using u to also refer to a

section u : M → F , the following lemma gives ω a nice self-replication property on

the sections.
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Lemma 2.1. u∗(ω) = u and ω1 ∧ · · · ∧ ωm 6= 0.

Proof. Compute pointwise as follows. Suppose π(u) = p, and let v ∈ TpM be

arbitrary. Then u∗(ωu)p(v) = ωu(u∗(v)) = up(π∗(u∗(v))) = up(v). The second

statement follows trivially from the first and the earlier observation that up is a

vector-space isomorphism.

To compute the derivative of ω, it is convenient to work locally. Let U ⊆ M be

an open set such that F(U) is trivial. Fix a local section u ∈ Γ(F(U)). This section

allows us to define a local trivialization H : U×GL(V )→ F(U) by H(p, g) = g−1up.

By the previous lemma, H∗(ω) = g−1u.

Lemma 2.2 (Cartan’s first structure equation). Let ω be the tautological form of a

co-frame bundle F . Then for some θ ∈ Γ(T∗F⊗gl(V )) and some T : F → V ⊗∧2V ∗,

dω = −θ ∧ ω + T (ω ∧ ω). (2.2)

Proof. We compute locally. Let u ∈ Γ(F(U)) where F(U) has a specified local

trivialization H as above. Note that u is basic on U × GL(V ), so du is semi-basic.

Hence du = Cu∧ u for some C : U → V ⊗∧2V ∗, as the components of u span T∗U .

Then at (p, g) ∈ U ×GL(V ), we compute

H∗(dω) = dH∗(ω) = d(g−1u)

= −g−1dgg−1 ∧ u+ g−1Cu ∧ u

= −g−1dg ∧H∗(ω) + g−1C(gg−1u) ∧ (gg−1u)

= −g−1dg ∧H∗(ω) + g−1CgH∗(ω) ∧ gH∗(ω).

(2.3)

One may choose θ ∈ Γ(T∗F ⊗ gl(V )) such that H∗(θ) = g−1dg and T = g−1C(g, g) :

F(U)→ V ⊗ ∧2V ∗ satisfy Equation (2.2).

Note that θ and T depend on the splitting of TF(U) determined by the local

trivialization H. Even so, they are not uniquely defined. Such a 1-form θ is called
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a connection of the co-frame bundle F , and θ pulls back to the fiber as the left-

invariant Maurer–Cartan form on GL(V ). The function T is called the torsion, and

its relationship to θ is crucial in what follows.

The notion of a connection is intimately related to the notion of a covariant

derivative of a vector bundle. Suppose ∇ : Γ(TM)→ Γ(TM ⊗T∗M) is a covariant

derivative on TM . For a specified frame {ei} on M , the covariant derivative may be

written ∇ : ej 7→ Aij ⊗ ei, where Aij ∈ Γ(T∗M ⊗ V ) is called the affine connection.

For any v = viei ∈ Γ(TM), ∇(v) = d(vi)⊗ei+viAji⊗ej = (d+A)v. If (uj) : M → F

is the co-framing dual to (ej), then u∗(θij) = Aij. That is, the affine connection and

the connection on the co-frame bundle are identical once a particular framing or co-

framing has been chosen. The operator d + θ is well-defined on the principal bundle

F and corresponds to ∇ = d + A on the vector bundle TM . In the context of F ,

one often writes ∇ to mean d + θ. Confusion between these two closely related ∇’s

is easily avoided by context; for our current purposes, ∇ is always the operator d + θ

on F .

We now study the canonical differential relations that exist for a connection.

Lemma 2.3 (First and Second Bianchi identities). ∇(θ) ∧ ω = ∇(T (ω ∧ ω)) and

d∇(θ) = ∇(θ) ∧ θ − θ ∧∇(θ).

Proof. The first statement is simply d2ω = 0, computed using Equation (2.2). The

second statement is a direct computation.

Definition 2.4 (G-structure). Let G be a Lie subgroup of GL(V ). A G-structure on

M is a G-subbundle of the co-frame bundle F . More explicitly, a G-structure on M

is a smooth submanifold B ⊂ F(M) such that π : B →M is a submersion and each

fiber Bp is a G-orbit under the G-actions in F .

Obviously, F is just the naturally-defined GL(V )-structure on a smooth manifold

M . The tautological form ω pulls back to any G-structure B, and with it come the
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first structure equation and some notion of connection and torsion. A connection

for a G-structure B is of the form θ ∈ Γ(T∗B ⊗ g) and is obtained from the vertical

component of the pull-back of the connection on F(M).

2.2 The Method of Equivalence

We want to determine when two G-structures are identical up to a diffeomorphism.

Informally, they must have the same smooth bundle structure, but it is also important

that diffeomorphism is G-equivariant so that the action by G is respected.

Let B be a G-structure over M . Suppose f : M → M̂ is a diffeomorphism. There

is an induced map f 1 : B → F(M̂) given by f 1 : u 7→ u ◦ (f∗)
−1, as shown in the

following diagram.

TpM Tf(p)M̂

V V
?

u

-
f∗

?

f1(u)=u◦(f∗)−1

-'

(2.4)

Note that f 1 is canonical since (f ◦ h)1 = f 1 ◦ h1 for diffeomorphisms f and h.

Also, f 1(u · g) = f 1(u) · g for all g ∈ G. This leads us to the obvious definition of

G-equivalence:

Definition 2.5 (Equivalence of G-structures). Two G-structures B ⊆ F(M) and

B̂ ⊆ F(M̂) are said to be G-equivalent if there exists a diffeomorphism f : M → M̂

such that f 1(B) = B̂.

Hence, we can determine whether two G-structures are G-equivalent by producing

(or excluding the existence of) a map B → B̂ satisfying appropriate conditions.

Theorem 2.6. If f : M → M̂ is a diffeomorphism, then (f 1)∗(ω̂) = ω. Conversely,

if F : B → B̂ is a G-equivariant diffeomorphism such that F ∗(ω̂) = ω, then there
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exists a unique diffeomorphism f : M → M̂ such that F = f 1.

Proof. Suppose that f : M → M̂ is a diffeomorphism. Then for any section u of B,

we obtain a section û = f 1(u). Let v ∈ TuB. Then we compute

(f 1)∗(ω̂û)u(v) = ω̂û((f
1)∗(v)) = û(π̂∗ ◦ (f 1)∗(v)) = u((f∗)

−1 ◦ π̂∗ ◦ (f 1)∗(v)). (2.5)

However, π̂∗ ◦ (f 1)∗ = f∗ ◦ π, so (f 1)∗(ω̂û)u(v) = u(π∗(v)) = ωu(v).

Conversely, assume we have an F : B → B̂ with the desired properties. Choose

a section u : M → B, and define f = π̂ ◦ F ◦ u. Note that f is a diffeomorphism

M → M̂ , as f∗ = π̂∗ ◦F∗ ◦u∗ has maximal rank and F is a diffeomorphism. In fact f

is independent of the choice of u (hence unique): any other choice u = u · g = g−1u

produces

f = π̂ ◦ F ◦ u = π̂ ◦ F ◦ (g−1u) = π̂ ◦ g−1F (u) = π̂ ◦ F (u) = f, (2.6)

since g−1F (u) and F (u) are in the same fiber.

Theorem 2.6 provides the perfect corollary necessary to express G-equivalence as

an EDS, which is very fruitful here. Recognizing that a map B → B̂ is a graph in

B × B̂, we seek an EDS whose integral manifolds imply the existence of graphs in

B × B̂. In particular, let I be the EDS on B × B̂ that is differentially generated by

ω − ω̂ with independence condition Ω = ω1 ∧ · · · ∧ ωm 6= 0.

Corollary 2.7. An m-dimensional integral manifold of (I,Ω) containing (b, b̂) exists

if and only if there are open neighborhoods N 3 b and N̂ 3 b̂ such that N and N̂ are

G-equivalent via a G-equivariant diffeomorphism that maps b to b̂.

The independence condition Ω 6= 0 guarantees that the projection from the in-

tegral manifold to B (or B̂) is a submersion. If this submersion is onto, then the

G-equivalence is global. Of course, the usual EDS approach only provides local ex-

istence of integral manifolds, so we can only conclude local G-equivalence near a
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specified point. Also, if integration of the ideal requires Cartan–Kähler techniques,

then the analytic category is required.

In any case, to solve the equivalence problem, we could study the ideal differen-

tially generated by ω−ω̂. Cartan’s first structure equation tells us that the derivative

of this generator is

d(ω − ω̂) = −(θ − θ̂) ∧ ω + (T − T̂ ) ω ∧ ω. (2.7)

By the independence condition Ω 6= 0, solutions exist only if we can absorb the

torsion term into the connection term. Once (T − T̂ ) is absorbed, we must analyze

the tableau given by the connection term, (θ − θ̂), to determine integrability of the

EDS.

To simplify this analysis, instead suppose we had a canonical form for the con-

nections such that the torsions were minimized in the sense that a maximum number

of irreducible G-representations of T and T̂ are absorbed into θ and θ̂, respectively.

If θ, θ̂, T , and T̂ were rewritten canonically in this way, we could conclude that

two G-structures are not G-equivalent whenever T 6= T̂ . Hence, we aim to solve

the equivalence problem by studying the freedom available in the connection of any

particular G-structure B over M , thus determining a canonical form for θ and T .

Fix a G-structure B over M with tautological form ω, connection θ ∈ Γ(T∗B⊗g),

and torsion T : B → V ⊗ ∧2V ∗. Using indices to clarify matrix and summation

operations, the first structure equation is

dωi = −θij ∧ ωj +
1

2
T ijk ω

j ∧ ωk. (2.8)

Suppose ∗θij is another connection on B, so ∗θij = θij+P
i
jk ω

k for some P : B → g⊗V ∗.

Let δ be the composition g⊗ V ∗ ↪→ V ⊗ V ∗ ⊗ V ∗ → V ⊗∧2V ∗, which computes the
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skew part of P . The resulting change in torsion is given by

dωi + ∗θij ∧ ωj = dωi + (θij + P i
jkω

k) ∧ ωj

=
1

2
T ijk ω

j ∧ ωk + P i
jk ω

k ∧ ωj

=
1

2

(
T ijk − δP i

jk

)
ωj ∧ ωk.

(2.9)

Hence, a change of θ + Pω in the connection results in a change of T − δP in the

torsion.

The canonical form of a connection is revealed by using the map δ and some

linear algebra. Let g(1) = ker δ and H0,2(g) = coker δ, as represented in this exact

sequence:

0 g(1) g⊗ V ∗ V ⊗ ∧2V ∗ H0,2(g) 0

B

- - -δ - -

HH
H

HH
HY

P

6
T

��
�
��
�*

[T ]

(2.10)

The unabsorbable torsion of a canonically-written connection takes values in H0,2(g),

and the change of connection providing any particular unabsorbable torsion is unique

if and only if g(1) = 0. Generally if g(1) fails to vanish, the system must be prolonged

to TB; however in the situations encountered in Chapters 4, 11, and 10, g(1) = 0 so

this discussion is sufficient.

Readers should be familiar with the example of SO(m)-structures, where so(m)(1) =

0 and H0,2(so(m)) = 0; each SO(m)-structure admits a unique torsion-free connec-

tion, which is called the Levi-Cevita connection. Unlike a SO(m)-structure, which

admits a unique canonical connection, our forthcoming structure admits several

canonical connections, as seen in Theorem 4.1 and Theorem 10.1.
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2.3 The Structure Theorem

Cartan’s structure theorem studies the integrability of vector fields that satisfy cer-

tain bracket properties. This theorem is necessary to “integrate” the structure equa-

tions of G-structures (after the method of equivalence has reduced the torsion) and

“count” the possible G-structures up to local G-equivariant diffeomorphism.

This section is essentially a detailed exposition of [Bry01, Appendix A], which is

in turn a summary of certain results from [Car04]. Following Bryant, theorems are

stated from the perspective of co-frames and structure equations, which is similar

in manner to Cartan’s foundational EDS work. This formulation is both reason-

ably straightforward and directly applicable to our forthcoming structure, Equa-

tion (6.11). A modern generalization of these results relies on the notions of Lie al-

gebroids and Lie groupoids. An excellent summary of this modern theory is [Mac05],

which supersedes the classic [Mac95], and like its predecessor contains an amazingly

thorough bibliography with historical notes. The capstone result appears in [CF03],

and a detailed exposition appears in [FC06].

For context and generalization, recall Lie’s third fundamental theorem, which

states that any putative structure equations that satisfy the conditions of a Lie

bracket are realized by a unique local Lie group whose Lie algebra has those structure

equations.

Theorem 2.8 (Lie’s Third Fundamental Theorem). Let g be an n-dimensional Lie

algebra with basis vectors Fi, 1 ≤ i ≤ n such that [Fj, Fk] = 1
2
Ci
jkFi. Then there is a

unique local Lie group N ⊂ Rn such that T0N and g are isomorphic as Lie algebras.

Note that the condition that g is a Lie algebra is really just the condition that the

bracket coefficients Ci
jk satisfy Ci

jk = −Ci
kj (skew-symmetry) and Ci

pjC
p
kl + Ci

pkC
p
lj +

Ci
plC

p
jk = 0 (Jacobi identity). The local Lie group N is unique in the sense that any

Lie group G with Lie algebra g has a neighborhood of the identity that is isomorphic
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toN . A clear summary of the classical PDE proof of Lie’s third fundamental theorem,

including some of the corresponding EDS language, appears in [SW93, Chapter 8],

and a version of the proof that inspires the corresponding theorem for Lie algebroids

appears in [FC06].

Traditionally, Lie’s theorem is presented as stated above, using brackets of vector

fields, but the language of differential forms is more convenient for our purpose.

Before proceeding to Cartan’s generalization, let us bridge a conceptual gap and

introduce some terminology by restating Lie’s result in this language.

Theorem 2.9 (Lie’s Third Fundamental Theorem, rephrased). Let Ci
jk be constants

for 1 ≤ i, j, k ≤ n. Consider the following structure equations:

dαi = −1

2
Ci
jk α

j ∧ αk (2.11)

If d2 ≡ 0 is satisfied on Equation (2.11), then there exists a solution manifold Nn with

smooth co-framing (αi) satisfying Equation (2.11). Moreover, the solution (N,α) is

locally unique up to structure-preserving diffeomorphism.

The constants Ci
jk may be taken to be skew in the lower indices, since they always

appear with a wedge product. The abused phrase “d2 ≡ 0” is shorthand for saying

that the constants Ci
jk are such that 0 ≡ d(−1

2
Ci
jkα

j ∧ αk) modulo the relation in

Equation (2.11). This condition is exactly the Jacobi identity. The equally abused

phrase “locally unique up to structure-preserving diffeomorphism” means this: any

two solutions (N,α) and (N̂ , α̂) have neighborhoods U and Û of the identity that

admit a diffeomorphism ϕ : U → Û such that ϕ∗(α̂) = α. Of course, ϕ must be an

isomorphism of local Lie groups, since N and N̂ are both Lie groups.

Cartan’s generalization deals with structure equations for which the Ci
jk are not

constant but are instead functions Rs → R.
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Theorem 2.10 (Cartan’s Structure Theorem). Let V ⊂ Rs be an open subset, and

let Ci
jk and F a

i be smooth functions on V for 1 ≤ i, j, k ≤ n and 1 ≤ a ≤ s. Consider

the following structure equations:

dαi = −1

2
Ci
jk(h

1, . . . , hs) αj ∧ αk,

dha = F a
k (h1, . . . , hs) αk.

(2.12)

If d2 ≡ 0 is satisfied on Equation (2.12), then for every v ∈ V there exists a solution

manifold Nn with smooth co-framing (αi) and a smooth map h : N → V satisfying

Equation (2.12) such that v ∈ h(N). Moreover, for fixed v, the solution (N,α, h) is

locally unique up to structure-preserving diffeomorphism.

Again, the Ci
jk may as well be skew-symmetric, and the phrase “d2 ≡ 0” means

that differentiating the right-hand side of Equation (2.12) yields zero modulo the

relations in Equation (2.12). The phrase “locally unique up to structure-preserving

diffeomorphism [at v]” carries the fairly obvious meaning and is investigated further

in Corollary 2.15 below.

This version of the structure theorem can be proven in the smooth category, but

Cartan’s most general version of the theorem uses Cartan–Kähler technology and

apparently applies only in the real-analytic category. As pointed out in [FC06], the

full relationship between Cartan’s structure theorem and the integration theory of

Lie algebroids merits further study.

The proof outlined below is decomposed into several lemmas, and the details that

are provided require only smoothness.

First, some simple definitions. Consider only V and the vector fields {Fi =

F a
i

∂
∂xa}ni=1 where V has coordinates x1, . . . , xs. These vector fields generate a sin-

gular distribution ∆ = span{Fi}. At each point v ∈ V , let the F -rank at v be

rF (v) = dim ∆v. If rF (v) were locally constant (that is, continuous) with value r,
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then the Frobenius theorem would imply the foliation of V by integral sub-manifolds

of dimension r. However, in our case ∆ may be singular. Of course, rF (v) is de-

termined by the rank of the matrix [F1(v), . . . , Fn(v)], which is given by the minor

polynomials of the matrix F . Therefore the set where rF (v) is maximized is open

and dense, and for all k < min{n, s}, the set {x : rF (v) ≤ k} is a closed subset of

{v : rF (v) ≤ k+1}. In other words, r : V → N is lower-semi-continuous.

An F -curve is defined to be a smooth curve γ : [a, b] → V such that γ′(t) =

ci(t)Fi(γ(t)) for some smooth functions ci on [a, b]. The F -leaf containing x is

defined as

OF (v) = {v̂ : ∃ F -curve γ, γ(a) = v, γ(b) = v̂}. (2.13)

In the analytic category, these singular distributions were successfully proven to

be integrable by singular foliations by Stefan and Sussmann [Sus73a] [Sus73b] [Ste74]

[Ste80]. The next two lemmas rephrase the relevant details of their work.

Lemma 2.11 (Rank of leaves). If γ : [a, b] → V is an F -curve, then rF (γ(a)) =

rF (γ(t)) for all t ∈ [a, b]. In particular, the F -rank is constant on each F -leaf.

In the analytic category, this can be proven by writing a generic annihilator of ∆

as a function on γ and showing that its Taylor series must vanish at γ(a); thus it is

demonstrated that ∆γ(b) is isomorphic to ∆γ(a) as vector spaces.

Lemma 2.12 (Singular Foliation). Each F -leaf is a connected, smooth manifold.

Proof. Fix v ∈ V and set r = rF (v). OF (v) is connected by definition, and near v

there are local coordinates ψv : Rr → OF (v) given by flow-box coordinates on a basis

{F1, . . . , Fr} of ∆v. All that remains is to show that these maps ψv are smooth on

overlaps, as accomplished in [Ste74].

In the modern language of algebroids and groupoids, consider a Lie algebroid

A = V × Rn with anchor map to TV given by the vector fields {Fi}. Then the
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singular distribution ∆ is the image of the anchor map. Generally, this Lie algebroid

is neither regular nor transitive. With some technical care regarding composition

of arrows and concatenation of F -curves, an F -curve in V is essentially an arrow

for a Lie groupoid G over V that integrates A. These two Lemmas amount to the

statement that, given a fixed source v, the targets of arrows (the endpoints of F -

curves) form the set OF (v), which is a submanifold of V [Mac05, Theorem 1.5.11]

and that the Lie groupoid G restricts to each leaf OF (v) as a locally trivial (that is,

transitive) Lie groupoid [Mac05, Theorem 1.5.12].

Whichever perspective is used, a “singular Frobenius theorem” is in place, and

solutions to the structure equations can be studied.

Lemma 2.13. If (N,α, h) is a connected solution to the structure system (V,C, F ),

then h : N → h(N) is a submersion into a single F -leaf.

Proof. For any p ∈ N the image of dh(p) is given by the span of {Fi(h(p))}, which

is exactly the tangent-space of the F -leaf containing h(p). The image of connected

N must remain in a single leaf, as a path in γ : [0, 1] → N produces a path h ◦ γ

in N with (h ◦ γ) = dh(γ′(t)), so γ is a path whose velocity is may be written as

ci(t)Fi(γ(t)).

The key to constructing solutions is the symmetry algebra of a point in the leaf,

which we now construct: Fix v ∈ V and consider the map λv : Rn → TvOF (v) given

by λv : ei 7→ Fi. Define a Lie bracket on Rn by [ej, ek] = 1
2
Ci
jk(v)ei. The symmetry

algebra at v is hv = kerλv, which is a Lie algebra with this Lie bracket.

Lemma 2.14 (Existence of Solutions). Suppose (N,α, h) is a connected and simply

connected solution of (V,C, F ) with p ∈ N and v = h(p). There is a neighborhood

U 3 p that is diffeomorphic to L×H where L ⊂ OF (v) is a contractible neighborhood

of v and H is an open Lie group with Lie algebra hv.
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Proof. Fix p ∈ N with r = rF (v). Some r×r sub-matrix of (F a
i ) has maximum rank

at p. This is an open condition, so in a neighborhood U of p, the same r × r sub-

matrix of (F a
i ) maintains maximum rank. By reordering the coordinates on V , we

may assume dh1∧· · ·∧dhr 6= 0. Additionally, we may assume dh1∧· · ·∧dhr∧dhi = 0

for all i > r, as otherwise we would have rF (v) > r.

Let K be the distribution on U that is annihilated by h∗. Of course, 0 = h∗(w) =

dh(w), so w ∈ K if and only if 0 = dh1(w) = · · · = dhr(w). The EDS algebraically

generated by {dh1, . . . , dhr} satisfies the conditions of the Frobenius theorem, so

the distribution K is integrable, meaning U (or a smaller open subset) is smoothly

foliated by integral submanifolds of dimension n − r. In particular there are local

coordinates (u1, . . . , un) on U centered at p such that the integral manifolds of the

Frobenius system are given by u1 = C1, u2 = C2, . . . , ur = Cr for r constants {Ci}.

Let H denote the leaf through p, so TpH = Kp. Let Σ denote a submanifold of

dimension r transverse to the leaf H. U is the total-space of a bundle with fiber H

over a base manifold Σ.

Let {Ei} denote the frame dual to the co-frame {αi} on U . Define a skew bilinear

form [·, ·] on Γ(TU) by [Ej, Ek] = 1
2
(Ci

j,k ◦ h)Ei. Notice that Ci
jk ◦ h is constant on

H; therefore, K is a Lie algebra with bracket [·, ·]. In fact, K = hv, so T(ui)H = hv

for all (ui). By Theorem 2.8, H a local Lie group integrating hv.

Finally, Σ is diffeomorphic to an open subset L of the leaf OF (v), since Σ is

transverse to H, so (h|Σ)∗ is an isomorphism.

In this proof, existence is shown by constructing a bundle L × H on which the

structure equations hold and where H is a local Lie group with Lie algebra hv. This

construction provides a local uniqueness statement.

Corollary 2.15 (Local uniqueness of solutions). Let (N,α, h) and (N̂ , α̂, ĥ) be solu-

tions of the structure system (V,C, F ) with h(N)∩ ĥ(N̂) 6= ∅. For any p, p̂ such that
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h(p) = v = ĥ(p̂), there exist neighborhoods U 3 p and Û 3 p̂ and a diffeomorphism

ϕ : U → Û such that ϕ∗(α̂) = α and ĥ ◦ ϕ = h.

In the situation of Corollary 2.15, we say that the solutions (N,α, h) and (N̂ , α̂, ĥ)

represent v. For fixed v, solutions that represent v form an equivalence class.

These have been local statements, and there may be topological obstructions to

the existence of N with h(N) = OF (v). To avoid concerning ourselves with these

obstructions, it is useful to define a finite-sequence version of equivalence.

Definition 2.16 (Leaf equivalence). Two solutions (N0, α0, h0) and (Nk, αk, hk) to

(V,C, F ) are said to be leaf-equivalent if there exist connected solutions (Ni, αi, hi)

with h(Ni) ∩ h(Ni−1) 6= ∅ for i = 1, . . . , k.

In fact, the proof of Lemma 2.14 also shows that hv is locally constant within the

F -leaves of V . In particular, since each leaf is connected, hv depends only on OF (v).

Therefore, solutions (N0, α0, h0) and (Nk, αk, hk) that are leaf-equivalent on OF (v)

must have neighborhoods diffeomorphic to the bundle L × H where H is the local

Lie group for the symmetry algebra hv; however, the diffeomorphism cannot preserve

αi and hi unless the solutions both represent the same v ∈ OF (v).
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3

GL(2)-Structures and their Representations

In this chapter, we specify notation for representations of GL(2,R) and for GL(2,R)-

structures. This notation is used extensively throughout the following material. With

the exception of Chapter 7, all groups that appear in this dissertation are real, so

GL(2,R) is henceforth denoted GL(2) without confusion.

3.1 Binary Polynomials

Let Vn ⊂ R[x, y] denote the vector space of degree n homogeneous polynomials in

x and y with real coefficients. We identify Vn with Rn+1 using the terms from the

binomial theorem to produce a basis; for example, V2 → R3 by

v−2 x
2 + v0 2xy + v2 y

2 7→ (v−2, v0, v2) ∈ R3. (3.1)

Recall that Vn is the unique irreducible representation of sl(2) of dimension n+1,

and its action is generated by

X = y
∂

∂x
, Y = −x ∂

∂y
, and H = x

∂

∂x
− y ∂

∂y
. (3.2)
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Furthermore, the Clebsch–Gordon [Hum72] pairings 〈·, ·〉p : Vm ⊗Vn → Vm+n−2p are

given by the formula

〈u, v〉p =
1

p!

p∑
k=0

(−1)k
(
p

k

)
∂pu

∂xp−k∂yk
· ∂pv

∂xk∂yp−k
(3.3)

and describe the decomposition of the tensor product into irreducible components

Vm ⊗ Vn = V|m−n| ⊕ V|m−n|+2 ⊕ · · · ⊕ Vm+n−2 ⊕ Vm+n. (3.4)

This pairing has some important properties. Notice that 〈u, v〉p = (−1)p 〈v, u〉p
and that the pairing is nontrivial for 0 ≤ p ≤ min{m,n}. Hence, the tensor decom-

position can be further refined in terms of the symmetric and alternating tensors:

Vn ◦ Vn = V2n ⊕ V2n−4 ⊕ · · · ⊕ V0 or 2, (3.5)

Vn ∧ Vn = V2n−2 ⊕ V2n−6 ⊕ · · · ⊕ V2 or 0. (3.6)

Notice too that 〈·, ·〉n : Vn ⊗ Vn → V0 = R is a non-degenerate symmetric- or skew-

bilinear form. Hence, for fixed u ∈ Vn the map 〈u, ·〉n : Vn → V0 = R1 provides is a

natural identification, Vn = V∗n, and we never distinguish between dual spaces when

considering representations.

For any derivation over R[x, y], a Leibniz rule over the pairing holds. Because

SL(2) is infinitesimally generated by X, Y, and H, this means that the pairings are

SL(2)-equivariant. That is, α(〈u, v〉p) = 〈α(u), v〉p + 〈u, α(v)〉p for any α ∈ sl(2)

implies a · 〈u, v〉p = 〈a · u, a · v · a〉p for any a ∈ SL(2).

The pairing can be generalized to binary-polynomial-valued alternating forms

over a manifold. If u ∈ Γ(∧rT∗M ⊗ Vm) and v ∈ Γ(∧sT∗M ⊗ Vn), then extend the

definition by using the wedge-product:

〈u, v〉p =
1

p!

p∑
k=0

(−1)k
(
p

k

)
∂pu

∂xp−k∂yk
∧ ∂pv

∂xk∂yp−k
. (3.7)
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In this generalization, the symmetry of the pairing is further altered by the degree

of the forms: 〈u, v〉p = (−1)rs+p 〈v, u〉p.

Let I denote the identity map on Vn. Then gl(2) = sl(2)⊕RI = V2⊕V0 is the Lie

algebra of the GL(2) generated by the actions of SL(2) and scaling in Vn. The pairing

is not GL(2)-equivariant, but the scaling action is computed easily where needed,

as in Equation (4.17). The geometric objects we encounter are projectively defined,

so the variance in scaling is generally of little concern. Notably, if λ is a RI-valued

1-form, then λ ∧ ω may be written as the trivial pairing 〈λ, ω〉0 = (−1) 〈ω, λ〉0 ∈

Γ(∧2T∗M ⊗ Vn) for any Vn-valued 1-form ω.

The vector space Vn admits two particularly interesting GL(2)-invariant subsets.

Let C ⊂ Vn denote the set of perfect nth degree polynomials, and let Q ⊂ Vn denote

the set of polynomials where a root is repeated k − 1 times. That is,

C = {(ax+ by)k}, and

Q = {(ax+ by)k−1(Ax+By)}.
(3.8)

It is not hard to see that C is a rational normal cone of dimension 2; Q is the tangent

developable of C, and C is the singular set of Q. Each of 0, C \ 0 and Q \ C is a

GL(2)-orbit in Vk, and C \ 0 is the unique orbit of dimension 2. In Chapter 7 the

GL(2)-orbits in Vk are considered for the particularly interesting case of k = 8.

Before we begin the discussion of bundles and co-frames, this is a good time to

mention an indexing convention used throughout this dissertation that may cause

some confusion for the reader. Some objects are labeled with many sub- and super-

scripts, for example R2,6
4 . The indices denote specific irreducible components of R

given by the gl(2) representation and the Clebsch–Gordon decomposition. In this

case R takes values in (V2 ⊕ V0)⊗ (V∗2 ⊕ V∗6 ), and R2,6
4 denotes the irreducible com-

ponent of R occurring in the copy of V4 obtained from the Clebsch–Gordon decom-

position of the product V2 ⊗ V∗6 . Another subscript appears when writing the full
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polynomial, and this subscript varies symmetrically across {−n,−n+2, . . . , n−2, n}

to indicate the vector components in the irreducible representation of weight n:

R2,6
4 = R2,6

4,−4 x
4 +R2,6

4,−2 4x3y +R2,6
4,0 6x2y2 +R2,6

4,2 4xy3 +R2,6
4,4 y

4. (3.9)

In other situations, the super-script may vary in length depending upon how much

information is necessary to uniquely determine the irreducible component using the

Clebsch–Gordon formula.

3.2 GL(2)-Structures

Consider a real manifold M of dimension n+1. Let F denote the Vn-valued co-frame

bundle of M . That is, F is the bundle whose fibers are comprised of isomorphisms

up : TpM → Vn. For g ∈ GL(Vn), the right action up · g = g−1 ◦ up acts smoothly,

simply and transitively on Fp, so F is a principal right GL(Vn) bundle.

Definition 3.1 (GL(2)-structure). A GL(2)-structure on an (n+1)-dimensional

manifold M is a sub-bundle B ⊂ F whose fiber is infinitesimally spanned by the

actions of X, Y, H, and I on Vn. B is a right-principal GL(2)-bundle over M .

When the dimension of M is n+1, the GL(2)-structure is said to have degree n.

The geometric content of a GL(2)-structure is provided by the following standard

theorem.

Theorem 3.2. A choice of GL(2)-structure on Mn+1 is equivalent to a choice of a

smooth field of rational normal cones, C ⊂ TM .

Proof. Suppose B → M is a GL(2)-structure. Since B is a reduction of F(M), a

point b ∈ Bp is the GL(2) orbit of an isomorphism up : TpM → Vn. The GL(2)

action on Vn yields a unique closed 2-dimensional orbit, a rational normal cone. Let

Cp = u−1
p (C). Since u is only defined up to a GL(2) action and the symmetry group
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of C is the same action of GL(2), the cone Cp is well-defined. C is therefore a smooth

distribution of rational normal cones over M .

Conversely, supposeM is equipped with a distribution C of rational normal cones.

By the definition of “rational normal cone,” there exists at each point p ∈ M an

isomorphism up : TpM → Vn that has the property up(Cp) = C. From Lemma 1.4,

the symmetry group of C is PGL(2), so any g−1 ◦ up ∈ up · GL(2) also has this

property. Hence, C specifies a GL(2) reduction of F .

Note that our notion of GL(2)-structures only includes the particular embedding

of GL(2) into GL(Vn) that is given as the symmetry group of the rational normal

cone. One could consider a broader class of structures defined by various embeddings

of GL(2) into GL(Rn+1) or a broader class of structures defined by the symmetry

group of a different family of cones. Of course, cones over curves of degree d < n

are degenerate and fail to be interesting as they correspond to “flat” embeddings

of GL(2) into a subspace of GL(Rd+1) ⊂ GL(Rn+1). On the other hand, congru-

ence classes of cones over non-degenerate curves of degree d > n may be extremely

complicated. The rational normal cone is both interesting and tractable, so for our

purposes “GL(2)-structure” always means a structure given these actions of X, Y,

H, and I on Vn preserving C.

The notion of k-integrability for a GL(2)-structure is introduced in Chapter 1.

The goal of this dissertation is to understand and classify local k-integrable GL(2)-

structures. The only interesting values of k are 2 and 3. If k = 1, then the local

condition is easily satisfied, depending on one function of one variable. If k = n,

then the infinitesimal condition is open. If k ≥ 4, then not all k-secant subspaces are

in the same GL(2)-orbit, so the infinitesimal problem alone is difficult. The GL(2)

orbits on Grk(Vn) are relatively new in the literature [CM09]. The dimension of M

matters profoundly in the theory of GL(2)-structures, particularly regarding 2- and
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3-integrability. The case n = 2 is trivial. The case n = 3 was thoroughly studied by

Bryant in [Bry91]. Chapters 4 through 9 are concerned with 5-dimensional manifolds

in order to examine the situation discovered by [FHK07], so the degree of the co-frame

polynomials is n = 4 in those chapters. In Chapters 10 through 12, all n ≥ 5 are

considered, but firm results are only computed for 5 ≤ n ≤ 20; however, one expects

no surprises for n ≥ 21, and extending the computations to that range should be

merely a matter of picking apart some rather tedious combinatorics. Hence, this

dissertation (almost) completes the theory of k-integrable GL(2)-structures.

In [Bry91], a related condition is also studied. Consider surfaces Σ ⊂ M where

TpΣ is contained in Q ⊂ Vn ' TpM , so TpΣ is tangent to C (instead of 2-secant to

C). This is essentially the condition that arises for 4th order (n = 3) ODE geometry

in [Bry91] and for 5th order (n = 4) ODE geometry in [GN06], [Nur07], [BN07],

[GN07], and [GN09]. There is no direct translation between k-integrability and this

condition; indeed, it appears that the two conditions are mutually exclusive for a

given GL(2)-structure, as the essential torsion invariants take values in different

irreducible representations of GL(2). However, the systems are eerily similar and

their relationship should be examined.
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4

Equivalence in Degree Four

In this chapter, we prove the existence of a canonical co-framing for aGL(2)-structure

of degree four. This co-framing is later used in Chapters 5 and 6 to study the

differential ideal that describes the existence of bi-secant surfaces and tri-secant 3-

folds.

4.1 The Tautological Form

Consider a manifold M of dimension 5 and its V4-valued co-frame bundle F whose

fibers are comprised of isomorphisms up : TpM → V4. F is a principal right GL(5)

bundle. We want to study the equivalence of GL(2)-structures over M . Let B ⊂ F

denote a GL(2)-structure generated by X, Y, H, and I as in Chapter 3. We follow

the method described in Chapter 2.

The tautological form of F is the unique and global 1-form naturally defined by

ωu = u ◦ π : TuF → Vn. The tautological form is semi-basic (that is, it annihilates

π-vertical vectors) and it pulls back to any sub-bundle as a unique, global and semi-

basic 1-form. So, let ω also denote the tautological form of B, which may written in
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vector or polynomial form using the earlier identification of Rn+1 with Vn as

ω =


ω−4

ω−2

ω0

ω2

ω4

 = ω−4 x4 + ω−2 4x3y + ω0 6x2y2 + ω2 4xy3 + ω4 y4. (4.1)

Since ω ∈ Γ(T∗B ⊗ Vn), we follow the convention that ω is a column-vector with

indices raised. Notice that dω ∈ Γ(∧2[T∗B]⊗V4) and ω∧ω ∈ Γ(∧2[T∗B⊗V4]). The

latter can be rewritten via the Clebsch–Gordon decomposition as

〈ω, ω〉3 + 〈ω, ω〉1 ∈ Γ(∧2(T∗B)⊗ (V2 ⊕ V6)). (4.2)

4.2 Connection

A connection for this bundle is a gl(2)-valued 1-form on B, θ ∈ Γ(T∗B ⊗ gl(2)).

Using the natural decomposition of gl(2) into sl(2) ⊕ R, θ may be re-written as

ϕ+ λ ∈ Γ(T∗B ⊗ (V2 ⊕V0)). Using this decomposition, θ ∧ ω ∈ Γ(∧2(T∗B)⊗V4) is

computed using the Clebsch–Gordon pairing as 〈ϕ, ω〉1 + 〈λ, ω〉0 ∈ Γ(∧2(T∗B)⊗V4).

In particular, writing ϕ = ϕ−2 x
2 + ϕ0 2xy + ϕ2 y

2 ∈ V2 and λ ∈ V0 provides the

first structure equation

dω = −〈ϕ, ω〉1 − 〈λ, ω〉0 + T (ω ∧ ω) (4.3)

where T ∈ V4 ⊗ ∧2(V∗4 ). Equation (4.3) may also be written in matrix form as

dωi = −θij ∧ ωj + T (ω ∧ ω). In coordinates, −θ ∧ ω is

−


8ϕ0 − λ −8ϕ−2 0 0 0

2ϕ2 4ϕ0 − λ −6ϕ−2 0 0
0 4ϕ2 −λ −4ϕ−2 0
0 0 6ϕ2 −4ϕ0 − λ −2ϕ−2

0 0 0 8ϕ2 −8ϕ0 − λ

 ∧

ω−4

ω−2

ω0

ω2

ω4

 . (4.4)

So, the matrix representation of θ is (2ϕ−2X + 2ϕ0H + 2ϕ2Y + λI), which takes

values in gl(2) ⊂ gl(V4).

37



4.3 Normalization of Torsion

The remainder of this chapter establishes Theorem 4.1, which provides a unique

connection and global canonical co-framing for B.

Changes of connection are of the form ϕ̂ = ϕ + P (ω) and λ̂ = λ + Q(ω) where

P ∈ V2 ⊗ V∗4 = V2 ⊕ V4 ⊕ V6 and Q ∈ V0 ⊗ V∗4 = V4. A canonical connection is

obtained by analyzing the exact sequence

0→ gl(2)(1) → (V2 ⊕ V0)⊗ V4
δ→ V4 ⊗ (∧2V4)→ H0,2(gl(2))→ 0. (4.5)

We must compute the images, δP and δQ, to find H0,2, and we are aided by the

Clebsch–Gordon formula. It is now time to start decomposing and labeling our

various objects. First, the torsion:

T ∈ V4⊗∧2(V∗4 ) = V4⊗ (V2⊕V6) = (V2⊕V4⊕V6)⊕ (V2⊕V4⊕V6⊕V8⊕V10). (4.6)

Hence, using the notation introduced in Chapter 3, we write T = (T 2
2 + T 2

4 + T 2
6 ) +

(T 6
2 + T 6

4 + T 6
6 + T 6

8 + T 6
10) where T 6

2 = T 6
2,−2 x

2 + T 6
2,0 2xy + T 6

2,2 y
2 ∈ V2 ⊂ V4 ⊗ V6,

and so on. Then we may fully decompose the torsion as

T (ω, ω) =
〈
T 2

2 , 〈w,w〉3
〉

0
+
〈
T 2

4 , 〈w,w〉3
〉

1
+
〈
T 2

6 , 〈w,w〉3
〉

2

+
〈
T 6

2 , 〈w,w〉1
〉

2
+
〈
T 6

4 , 〈w,w〉1
〉

3
+
〈
T 6

6 , 〈w,w〉1
〉

4

+
〈
T 6

8 , 〈w,w〉1
〉

5
+
〈
T 6

10, 〈w,w〉1
〉

6
.

(4.7)

Now, consider the change-of-connection, P ∈ V2 ⊕ V4 ⊕ V6, where V2 3 P (ω) =

〈P2, ω〉2 + 〈P4, ω〉3 + 〈P6, ω〉4. Let δP ∈ V4 ⊗ ∧2(V4) have components δP = δP 2
2 +

δP 2
4 + δP 2

6 + δP 6
2 + δP 6

4 + δP 6
6 + δP 6

8 + δP 6
10, similar to the decomposition of T . As

δ is a linear map, each of δP 2
k and δP 6

k is a linear combination of the various Pj.

Moreover, δP 2
k and δP 6

k can only be in the image of Pj for j = k, since these are

irreducible representations and the action of δ must be SL(2)-equivariant. That is,
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δ must preserve the weights of the representations. In particular there must exist

constants a2, a4, a6, b2, b4, and b6 such that

0 = 〈P (ω), ω〉1 − δP (ω, ω)

= 〈〈P2, ω〉2 , ω〉1 + 〈〈P4, ω〉3 , ω〉1 + 〈〈P6, ω〉4 , ω〉1

− 〈a2P2, 〈w,w〉3〉0 − 〈a4P4, 〈w,w〉3〉1 − 〈a6P6, 〈w,w〉3〉2

− 〈b2P2, 〈w,w〉1〉2 − 〈b4P4, 〈w,w〉1〉3 − 〈b6P6, 〈w,w〉1〉4 .

(4.8)

Carrying out this computation shows that

a2 =
3

10
, b2 =

1

5
, a4 =

1

2
, b4 = 0, a6 = −1

5
, b6 = − 1

20
. (4.9)

Similarly (but more easily) we see that Q ∈ V4, where V0 3 Q(ω) = 〈Q4, ω〉4. Let

δQ ∈ V4⊗∧2(V4) have components δQ = δQ2
2 +δQ2

4 +δQ2
6 +δQ6

2 +δQ6
4 +δQ6

6 +δQ6
8 +

δQ6
10, but again the image must have the same weight as the domain. In particular

there must exist constants c4, and d4 such that

0 = 〈Q(ω), ω〉0 − δQ(ω, ω)

= 〈〈Q4, ω〉4 , ω〉0 − 〈c4Q4, 〈w,w〉3〉1 − 〈d4Q4, 〈w,w〉1〉3
(4.10)

Carrying out this computation shows that

c4 = − 1

40
, d4 = − 1

160
. (4.11)

These computations allow us to normalize the torsion.

Theorem 4.1. gl(2)(1) = sl(2)(1) = 0 and H0,2(sl(2)) = V2 ⊕ V4 ⊕ V6 ⊕ V8 ⊕ V10,

while H0,2(gl(2)) = V2 ⊕ V6 ⊕ V8 ⊕ V10. In particular, any GL(2)-structure B over

M5 admits four distinct connections such that the torsion T is of the form

T = T2 + T6 + T8 + T10 ∈ V2 ⊕ V6 ⊕ V8 ⊕ V10 ⊂ V4 ⊗ (V2 ⊕ V∗6 ). (4.12)
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Proof. Let (ϕ, λ) be an arbitrary connection with torsion T , and let ϕ̂ = ϕ + P (ω),

λ̂ = λ+Q(λ) have torsion T̂ . Then

T̂ (ω, ω) = dω + 〈ϕ̂, ω〉1 +
〈
λ̂, ω

〉
0

= dω + 〈ϕ, ω〉1 + 〈P (ω), ω〉1 − 〈Q(ω), ω〉0

= (T + δP + δQ)(ω, ω).

(4.13)

Using Equation (4.9) and Equation (4.11), the absorption of torsion is dictated by

the solvability of the equations

T̂ 2
2 = T 2

2 +
3

10
P2,

T̂ 2
4 = T 2

4 +
1

2
P4 −

1

40
Q4,

T̂ 2
6 = T 2

6 −
1

5
P6,

T̂ 6
2 = T 6

6 +
1

5
P2,

T̂ 6
4 = T 6

4 −
1

160
Q4,

T̂ 6
6 = T 6

6 −
1

20
P6,

T̂ 6
8 = T 6

8 ,

T̂ 6
10 = T 6

10.

(4.14)

Generally, we may choose P2 to force exactly one of T̂ 6
2 or T̂ 2

2 to vanish. Similarly,

we may choose P6 to force exactly one of T̂ 6
6 or T̂ 2

6 to vanish. Unique Q4 and P4

eliminate T̂ 6
4 and T̂ 2

4 . All other components of T̂ are fixed.

Note that in fact there are four canonical connections on B with torsion in

H0,2(gl(2)), based on the choice of which representations of T to absorb in weight 2

and 6. For concreteness in computation, we make a consistent choice.
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Corollary 4.2. There is a unique choice of Q4, P2, P4, and P6 such that T 6
4 = T 2

2 =

T 2
4 = T 2

6 = 0.

Proof. Choose P2 to set T̂ 2
2 = 0, and choose P6 to set T̂ 2

6 = 0.

This solves the equivalence problem and establishes a global and canonical (if not

entirely unique) co-framing for B. Henceforth, the connection (ϕ, λ) is assumed to be

this unique connection. The first structure equation, represented as Equation (4.4)

or Equation (4.3), still holds, where we understand that T = T2 ⊕ T6 ⊕ T8 ⊕ T10 as

above, and we write the components of Tk as

Tk = (Tk,−k, Tk,−k+2, . . . , Tk,k−2, Tk,k) =
k∑
j=0

Tk,2j−k

(
k

j

)
xk−jyj. (4.15)

The Clebsch–Gordon pairing is not GL(2)-equivariant; to see how a scaling action

affects the torsion, fix ρ ∈ R×, and let Rg(u) = u · g = g−1u denote the right action

of g ∈ GL(2) on u ∈ B. Then R∗ρI(ω) = ρ−1ω, and the first structure equation

transforms as

R∗ρI(dω) = d(R∗ρIω) = d(ρ−1ω) = ρ−1(dω). (4.16)

This allows us to derive the action of ρI in the torsion. For example,

ρ−1 〈T8, 〈ω, ω〉1〉5 = R∗ρI
(
〈T8, 〈ω, ω〉1〉5

)
=
〈
R∗ρI(T8),

〈
ρ−1ω, ρ−1ω

〉
1

〉
5
. (4.17)

In particular, R∗ρI(Tk) = ρTk for any irreducible component Tk of T of degree k.

4.4 Curvature and the Bianchi Identity

Second-order information can be obtained by differentiating the first structure equa-

tion and studying the Bianchi identity, ∇(θ) ∧ ω = ∇(T (ω ∧ ω)).

For GL(2)-structures of arbitrary degree n, the curvature, ∇(θ), decomposes into

dϕ+ 1
2
〈ϕ, ϕ〉1 = R(ω ∧ ω) and dλ = r(ω ∧ ω). The curvature functions are

R : B → sl(2)⊗ ∧2(V∗n) and r : B → R⊗ ∧2(V∗n). (4.18)
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Moreover, the covariant derivative of the torsion two-form, ∇(T (ω∧ω)), decomposes

as ∇(T (ω ∧ ω)) = ∇(T )(ω ∧ ω) + 2Q(T, T )(ω ∧ ω ∧ ω). The second-order torsion

functions are

∇(T ) :→ H0,2(gl(2))⊗ V∗n and Q : B → Sym2(H0,2(gl(2)) ∩ (Vn ⊗ ∧3V∗n). (4.19)

For n = 4, the Clebsch–Gordon decomposition provides specific irreducible rep-

resentations from

R = R2
0 +R2

2 +R2
4 +R6

4 +R6
6 +R6

8 ∈ V2 ⊗ (V2 ⊕ V6),

r = r2 + r6 ∈ V0 ⊗ (V2 ⊕ V6),

∇T ∈ (V2 ⊕ V6 ⊕ V8 ⊕ V10)⊗ V4, and

Q ∈ Sym2(V2 ⊕ V6 ⊕ V8 ⊕ V10) ∩ (V4 ⊗ (V2 ⊕ V6)).

(4.20)

The Bianchi identity provides relations between the irreducible representations of

R, r, ∇T , and Q; however, it is too difficult to analyze until we consider particular

systems in Chapters 5 and 6.
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5

2-Integrability in Degree Four

In this chapter, we use the Cartan–Kähler theorem to study the differential ideal

that describes the existence of many bi-secant surfaces and arrive at a structure

theorem for 2-integrable GL(2)-structures of degree 4. Unfortunately, these structure

equations are not closed under exterior differentiation, but they simplify beautifully

in Chapter 6 during the study of 3-integrability.

5.1 Bi-secant Surfaces and 2-Integrability

We want to find the conditions on B that allows any bi-secant plane in TM to be

extended to a bi-secant surface Σ ⊂ M . The tangent planes TpΣ must intersect Cp

in two lines for all p ∈ Σ, so TpΣ is spanned by (a(p)x+b(p)y)4 and (A(p)x+B(p)y)4.

Under a GL(2) change of basis in TpM , we may assume the spanning vectors are x4

and y4.

Lifting this problem to B, this is identical to finding integral surfaces of the

exterior differential system I that is differentially generated by 1-forms {w−2, w0, w2}

with independence condition Ω = ω−4 ∧ ω4 6= 0.

We compute the generating two-forms using Equation (4.4) and the unique con-
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nection of Corollary 4.2. To make the computation more explicit, we use vector

notation as described in Chapter 3:

d

ω−2

ω0

ω2

 ≡
−8ϕ2 0

0 0
0 8ϕ−2

 ∧ (ω−4

ω4

)
+ 8

τ−2

τ 0

τ 2

ω−4 ∧ ω4 (5.1)

modulo ω−2, ω0, ω2, where

τ−2 = −11520 T10,−2 + 2880 T8,−2 + 288 T6,−2 + 24 T2,−2

τ 0 = −14400 T10,0 + 864 T6,0 − 36 T2,0

τ 2 = −11520 T10,2 − 2880 T8,2 + 288 T6,2 + 24 T2,2

(5.2)

Because of the independence condition Ω 6= 0, integral elements exist only when

the torsion can be absorbed. The torsion component τ 0 can never be absorbed, so

integral manifolds exist only when τ 0 = 0. The condition of 2-integrability means

that every 2-secant plane is tangent to a 2-secant surface. The GL(2) action is tran-

sitive on 2-secant planes in TpM ; therefore, it must be that τ 0 = 0 for every element

in the GL(2) orbit of T . Under a GL(2) action, the coordinates of the irreducible

representations of T will change, so each irreducible representation that appears in

τ 0 must vanish identically. Hence, 2-integrability of M by integral manifolds implies

T10 = T6 = T2 = 0. (5.3)

The remaining torsion components, τ−2 and τ 2, can be absorbed easily. Let

π1 = −8ϕ2 − 8τ−2 ω4 and π2 = 8ϕ−2 + 8τ 2 ω−4, so

d

ω−2

ω0

ω2

 ≡
π1 0

0 0
0 π2

 ∧ (ω−4

ω4

)
, mod ω−2, ω0, ω2. (5.4)

We can now apply Cartan’s test to the linear Pfaffian system whose tableau is

given in Equation (5.4) [BCG+91] [IL03]. For a generic flag of TpN obtained from
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generic linear combinations of ω−4 and ω4, this tableau has Cartan characters s1 = 2

and s2 = 0. The space of integral elements for the EDS (I,Ω) is 2-dimensional, as

parametrized by p1,4 and p3,−4 where π1 = p1,4 ω
4 and π2 = p3,−4 ω

−4. Therefore

Cartan’s test indicates that the system in involutive. Because of the use of the

Cartan–Kähler theorem here, real-analyticity is required. This discussion proves the

following theorem.

Theorem 5.1. If a GL(2)-structure B is 2-integrable, then T = T8 (that is, T2 =

T6 = T10 = 0) and bi-secant surfaces are parametrized by two functions of one

variable. Conversely, a GL(2)-structure B is analytic with T = T8, then B is 2-

integrable.

Note that analyticity is unlikely to be necessary and can probably be weakened

to smoothness using more powerful techniques. For 2-integrable GL(2)-structures

arising from PDEs of hydrodynamic type, the parametrization by two functions of one

variable confirms the computation presented in [FHK07]. The necessary condition

T = T8 appears to be new.

5.2 Curvature

To find additional necessary conditions, we now examine the Bianchi identity of B.

In particular, consider Equation 4.20 under the condition T = T8. In this case, the

decompositions of ∇T and Q simplify considerably:

R = R2
0 +R2

2 +R2
4 +R6

4 +R6
6 +R6

8 ∈ V2 ⊗ (∧2V∗4 ),

r = r2 + r6 ∈ V0 ⊗ (∧2V∗4 ),

∇T = S4 + S6 + S8 + S10 + S12 ∈ Vn+4 ⊗ V∗4 .

Q = Q4 +Q8 ∈ S2(Vn+4) ∩ (V4 ⊗ ∧3V∗4 ).

(5.5)
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Expanding the Bianchi identity with these substitutions, we obtain

∇(θ) ∧ ω = 〈∇(φ), ω〉1 + 〈dλ, ω〉0

= 〈R(ω ∧ ω), ω〉1 + 〈r(ω ∧ ω), ω〉0

= +
〈〈
R2

0, 〈ω, ω〉3
〉

0
+
〈
R2

2, 〈ω, ω〉3
〉

1
+
〈
R2

4, 〈ω, ω〉3
〉

2
, ω1

〉
+
〈〈
R6

4, 〈ω, ω〉1
〉

4
+
〈
R6

6, 〈ω, ω〉1
〉

5
+
〈
R6

6, 〈ω, ω〉1
〉

6
, ω
〉

1

+
〈
〈r2, 〈ω, ω〉3〉2 + 〈r6, 〈ω, ω〉1〉6 , ω

〉
0
,

(5.6)

〈∇T8, 〈ω, ω〉1〉5 = 〈〈S4, ω〉0 + 〈S6, ω〉1 + 〈S8, ω〉2 + 〈S10, ω〉3 + 〈S12, ω〉4 , 〈ω, ω〉1〉5 ,

(5.7)

and

Q(T ◦ T )(ω ∧ ω ∧ ω) =
〈
Q4, 〈〈ω, ω〉A , ω〉B + 〈〈ω, ω〉A , ω〉B

〉
C

+
〈
Q8, 〈〈ω, ω〉A , ω〉B + 〈〈ω, ω〉A , ω〉B

〉
C
.

(5.8)

Hence, the Bianchi identity implies relations among the various representations of

R, r, S, and Q.

Theorem 5.2. If a GL(2)-structure B of degree 4 is 2-integrable, then T = T8

and these conditions must hold: S10 = 0, R6
8 = 33 S8, R6

6 = 45 S6, r6
6 = 960 S6

R6
4 = −8 Q4 +−12 S4, R2

4 = 48 Q4 + 42 S4, R2
2 = 0, and r2

2 = 0.

Notice that R2
0 is the only term from ∇(θ) that is still free. That is, 2-integrable

GL(2)-structures are characterized locally by two functions, T8 ∈ V8 and R2
0 ∈ V0.
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6

3-Integrability in Degree Four

In this chapter, we use the Cartan–Kähler theorem to study the differential ideal that

describes the existence of many tri-secant 3-folds in a five-dimensional manifold. This

leads to a structure theorem for certain 3-integrable GL(2)-structures of degree 4 and

to the discovery of a local classification of these objects, whose topology is studied

in Chapter 8.

6.1 Tri-secant 3-Folds and 3-Integrability

We want to find the conditions on B that allow any tri-secant 3-plane in TM to be

extended to a tri-secant 3-fold N ⊂M . The tangent spaces TpN must intersect Cp in

three independent lines for all p ∈ N . Under a GL(2) change of basis in TpM we may

assume the spanning vectors are x4 and y4 and (x+y)4 = x4+4x3y+6x2y2+4xy3+y4.

Hence, any vector tangent to the 3-fold looks like (a + b) x4 + b 4x3y + b 6x2y2 +

b 4xy4 + (b+ c) y4. Lifting this problem to B, these vectors are in the kernel of two

1-forms, κ−2 = ω−2 − ω0 and κ2 = ω2 − ω0.

This problem is then identical to finding integral 3-folds of the EDS I differentially

generated by 1-forms {κ−2, κ2} with independence condition Ω = ω−4 ∧ω0 ∧ω4 6= 0.
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The tableau and torsion for this system are given by

d

(
κ−2

κ2

)
≡
(
π1 π3 0
0 −π1 − π2 − π3 π2

)
∧

ω−4

ω0

ω4

+ τ(ω, ω), (6.1)

modulo κ−2, κ2, where π1 = −2ϕ2, π2 = 2ϕ−2, and π3 = 2ϕ−2 − 4ϕ0 + 4ϕ2. There

are two questions: Is the torsion absorbable under a change of basis, and what is the

dimension of the space of integral elements?

If π̂i = πi − pi,aωa is a generic change of basis, then these equations become

dκ−2 ≡ π1 ∧ ω−4 + π3 ∧ ω0 − τ−2
−4,0ω

−4 ∧ ω0 − τ−2
−4,4ω

−4 ∧ ω4 − τ−2
0,4ω

0 ∧ ω4

= π̂1ω
−4 + π̂3ω

0 + (−p1,0 + p3,−4 − τ−2
−4,0)ω−4 ∧ ω0

+ (−p1,4 − τ−2
−4,4)ω−4 ∧ ω4 + (−p3,4 − τ−2

0,4 )ω0 ∧ ω4,

(6.2)

and

dκ2 ≡ −(π1 + π2 + π3) ∧ ω0 + π2 ∧ ω4 − τ 2
−4,0ω

−4 ∧ ω0 − τ 2
−4,4ω

−4 ∧ ω4 − τ 2
0,4ω

0 ∧ ω4

= −(π̂1 + π̂2 + π̂3) ∧ ω0 + π̂2 ∧ ω4 − (τ 2
−4,0 + p1,−4 + p2,−4 + p3,−4)ω−4 ∧ ω0

+ (p2,−4 − τ 2
−4,4)ω−4 ∧ ω4 + (p1,4 + p2,4 + p3,4 + p2,0 − τ 2

0,4)ω0 ∧ ω4

(6.3)

The apparent torsion can be fully absorbed by setting

p1,4 = −τ−2
−4,4

p2,−4 = τ 2
−4,4

p3,4 = −τ−2
0,4

p3,−4 = −p1,−4 − τ 2
−4,4 − τ 2

−4,0

p2,4 = −p2,0 − p3,4 − p1,4 + τ 2
0,4 = −p2,0 + τ−2

0,4 + τ−2
−4,4 + τ 2

0,4

p1,0 = p3,−4 − τ−2
−4,4 = −p1,−4 − τ 2

−4,4 − τ 2
−4,0 − τ 2

−4,4.

(6.4)

The integral elements are still free up to arbitrary choice of three variables, p1,−4,

p2,0, and p3,0. Since the Cartan characters are s1 = 2, s2 = 1, and s3 = 0, but

s1 + 2s2 + 3s3 = 4 6= 3, the tableau is not involutive; prolongation is required.
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Let I(1) be the prolonged ideal, which is differentially generated by the forms κ−2

and κ2 along with

η1 = π1 + p1,−4 ω
−4 − (p1,−4 + τ 2

−4,4 + τ 2
−4,0 + τ 2

−4,4) ω0 − τ−2
−4,4 ω

4,

η2 = π2 + τ 2
−4,4 ω

−4 + p2,0 ω
0 + (−p2,0 + τ−2

0,4 + τ−2
−4,4 + τ 2

0,4) ω4, and

η3 = π3 + (−p1,−4 − τ 2
−4,4 − τ 2

−4,0) ω−4 + p3,0 ω
0 +−τ−2

0,4 ω
4.

(6.5)

After this prolongation, the tableau and torsion are given by

d


κ−2

κ2

η1

η2

η3

 ≡


0 0 0
0 0 0
π4 −π4 0
0 π5 −π5

−π4 π6 0

 ∧
ω−4

ω0

ω4

+ τ (1)(η ∧ η), (6.6)

modulo κ−2, κ2, η1, η2, η3. This tableau has Cartan characters s1 = 3, s2 = 0, and

s3 = 0. Applying Cartan’s test, s1 + 2s2 + 3s3 = 3, which matches the dimension of

V3(I), so the tableau is involutive. If the torsion vanishes, we may conclude (in the

analytic category) that the integral 3-folds locally depend on three functions of one

variable.

Before dealing with the torsion, let us examine the characteristic variety for this

involutive linear Pfaffian tableau. For a complete overview of the characteristic

variety and its powerful properties, refer to [BCG+91, Chapter V]. Examining the

Cartan characters for the tableau, it is clear that the complex characteristic variety

has dimension 0 and degree 3. More specifically, let E denote a generic integral

element of dimension 3. Restricted to E, the tableau implies π4 = Aω−4 − Aω0,

π5 = Bω0−Bω4, and π6 = Aω−4 +Cω0 for parameters A,B,C that uniquely define

E in Gr3(TB). In other words,

E = ker({κ−2, κ2, η1, η2, η3, π4 − A(ω−4 − ω0), π5 −B(ω0 − ω4), π6 − Aω−4 − Cω0}).

(6.7)
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Consider P1 = ker(ω−4 − ω0) ⊂ E, where this 1-form has been restricted to E, so

P1 = ker({κ−2, κ2, η1, η2, η3, π4, π5−Bω0 +Bω4, π6−(A+C)ω0}) ∈ Gr2(TB). (6.8)

In particular, the polar space of P1 has dimension greater than dimE = 3, so ω−4−

ω0 ∈ PE∗ is in the characteristic variety of E. Similarly, P2 = ker(ω0−ω4) and P3 =

ker(Aω−4 + Cω0) are in the characteristic variety as well. Hence, the characteristic

variety over generic E is given by three distinct points in PE∗. This implies that

each 3-dimensional manifold is foliated by three distinct families of 2-dimensional

integral manifolds for the EDS (I,Ω).

Theorem 6.1. If a GL(2)-structure of degree 5 is 3-integrable, then tri-secant 3-folds

locally depend upon three functions of one variable. Each tri-secant 3-fold is foliated

by three families of surfaces integral to I(1).

To determine sufficient conditions for existence of tri-secant 3-folds, we must

study the unabsorbable portion of the remaining torsion, τ (1). Because τ (1) is the

torsion of the prolonged system I(1), it will involve second-order invariants of the

GL(2)-structure B that appear in the Bianchi identity for B, Equation (4.20). Since

T is a priori valued in H0,2(gl(2)) = V2 ⊕ V6 ⊕ V8 ⊕ V10, components of any of the

following functions may occur in τ (1):

R ∈ V2 ⊗ (∧2V4),

r ∈ V0 ⊗ (∧2V4),

∇T ∈ (V2 ⊕ V6 ⊕ V8 ⊕ V10)⊗ V4,

Q ∈ Sym2(V2 ⊕ V6 ⊕ V8 ⊕ V10) ∩ (V4 ⊗ ∧3V4).

(6.9)

The vanishing of the unabsorbable portion of τ (1) will place restrictions on the

various irreducible representations appearing in Equation (6.9). The enormity of Q

and ∇T makes decomposition of the unabsorbable portion of τ (1) extremely diffi-
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cult. Fortunately, we can make a simplifying assumption that is consistent with the

motivating PDE theory in Theorem 1.7.

Definition 6.2 (2,3-Integrability). A GL(2)-structure B is said to be 2,3-integrable

if it is both 2-integrable and 3-integrable.

By Theorem 5.1, one may equivalently say that B is 2,3-integrable if B is 3-

integrable and T (B) ⊂ V8. Restating Theorem 6.1 in this context provides the

following corollary.

Corollary 6.3. If a GL(2)-structure B →M of degree 5 is 2,3-integrable, then tri-

secant 3-folds in M locally depend upon three functions of one variable. Moreover,

any tri-secant submanifold of M is triply foliated by bi-secant surfaces.

For 2,3-integrable GL(2)-structures arising from PDEs of hydrodynamic type as

in Theorem 1.7, the parametrization by three functions of one variable confirms the

computation presented in [FHK07]. The triple foliation by bi-secant surfaces appears

to be new, though it is not surprising based on the description of highest-weight

polynomial subspaces of Vn seen in [CM09].

Let us now examine the existence question for 2,3-integrable GL(2)-structures.

If B is 2,3-integrable, then the conditions on R, r, S, and Q established in Theo-

rem 5.2 hold. Under this assumption, examination of the unabsorbable portion of τ (1)

and verification of the equations d(dηi) ≡ 0 mod I(1) together force the following

conditions:

R2
0 = −2080 〈T, T 〉8 , S4 =

8

21
〈T, T 〉6 , S6 = 0,

S8 =
8

77
〈T, T 〉4 , S12 =

80

231
〈T, T 〉2 .

(6.10)

Notice that both R2
0 and S (hence∇θ and∇T ) depend only on T , so no new functions

arise when differentiating the structure equations for those GL(2)-structures that

satisfy these integrability conditions.
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Theorem 6.4 (2,3-integrable GL(2)-structure equations). A GL(2)-structure B over

M5 is 2,3-integrable if and only if the torsion T of B only takes values in V8 and

the conditions in Equation (6.10) are satisfied. In particular, a 2,3-integrable GL(2)-

structure B has the following structure equations

dω = −〈ϕ, ω〉1 − 〈λ, ω〉0 + 〈T, 〈ω, ω〉1〉5

dλ = 0

dϕ = −1

2
〈ϕ, ϕ〉1 +−2080 〈〈T, T 〉8 , 〈ω, ω〉3〉0 + 64 〈〈T, T 〉6 , 〈ω, ω〉3〉2

− 88

7
〈〈T, T 〉6 , 〈ω, ω〉1〉4 +

24

7
〈〈T, T 〉4 , 〈ω, ω〉1〉6

dT = J(T )

ωλ
ϕ



(6.11)

for a 9 × 9 matrix J(T ) whose entries are linear and quadratic polynomials in the

coefficients of T , as listed in Appendix A.

Proof. By the discussion leading to Equation (6.10), the conditions are necessary and

the structure equations are as given. The conditions are sufficient, since a simple

computation of d2 ≡ 0 (in Maple) verifies that the structure equations fulfill the

properties of Cartan’s structure theorem, Theorem 2.12. The torsion T : B → V8

plays the role of h : N → V . The matrix J(T ) plays the role of the matrix F (h) and

defines a singular foliation of V8. For any value v ∈ V8, a local solution manifold can

be constructed using the symmetry algebra of the leaf OJ(v) ⊂ V8.

Actually, there is one minor subtlety here. Not all of the J-leaves in V8 are

connected as claimed in Lemma 2.12. Some of them are seen in Chapter 8 to have two

components that correspond to the reflection action ±I ∈ GL(2). This discrepancy is

easily remedied by considering instead the foliation by J-leaves of an open half-space

of V8. As seen in Equation 4.17, R∗−I(T ) = −T . Hence, for any GL(2)-structure
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B, T (B) 3 v implies T (B) 3 −v. In particular, the GL(2)-orbit of any “half-

leaf” OF (v)/(±I) will include the entire leaf OF (v), so for the purpose of classifying

GL(2)-structures, this subtlety can be safely ignored.

Much more than existence can be gathered from Cartan’s structure theorem—it

provides local uniqueness as well. To understand the consequences, let us make some

observations based on the results of Chapter 2. Since these statements are essentially

local, a connected and pointed space is useful.

Definition 6.5. A connected pointed 3-integrableGL(2)-structure, written (B,M, p),

is a 3-integrable GL(2)-structure of degree 4, B →M 3 p with M connected.

Note again the critically important condition that M must be connected! We can

now take full advantage of the local equivalence classes built into Cartan’s structure

theorem.

Lemma 6.6. (B,M, p) and (B̂, M̂ , p̂) admit a local GL(2)-equivalence f : M → M̂

with f(p) = p̂ if and only if T (π−1(p))∩ T̂ (π̂−1(p̂)) 6= ∅. That is, the value of T at a

single point uniquely defines a local 2,3-integrable GL(2)-structure of degree 4 up to

GL(2)-equivalence.

Proof. Let U 3 p and Û 3 p̂ be neighborhoods such that f : U → Û is a diffeomor-

phism. Then (f 1)∗(ω̂) = ω implies, so modulo this relation we have

(f 1)∗(dω̂)− dω = (f 1)∗(−θ̂ ∧ ω̂ + T̂ (ω̂ ∧ ω̂)) + θ ∧ ω − T (ω ∧ ω)

= −((f 1)∗θ̂ − θ) ∧ ω + ((f 1)∗T̂ − T )(ω ∧ ω)).
(6.12)

In particular, 0 = (f 1)∗T̂ − T = (T̂ ◦ f 1) − T . Therefore, for any b ∈ π−1(U),

T (b) = T̂ (f 1(b)).

Conversely, suppose π(b) = p and π̂(b̂) = p̂ with T̂ (b̂) = T (b) = v. That is,

(B,M, p) and (B̂, M̂ , p̂) both represent v. By Lemma 2.15, there are neighborhoods
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π−1(U) 3 b and π̂−1(Û) 3 b̂ and diffeomorphism F : π−1(U) → π̂−1(Û) such that

F ∗ preserves the 1-forms ω, λ, ϕ and the torsion T . In particular, F is a GL(2)-

equivariant diffeomorphism by Lemma 2.6.

If we can identify the J-leaves in V8, then we can locally classify the 2,3-integrable

GL(2)-structures of degree 4 up to leaf-equivalence. Leaf-equivalence is weaker than

classification by GL(2)-equivalence, but the obstructions preventing leaf-equivalence

from implying GL(2)-equivalence are topological, so they cannot be determined with

our strictly local methods. Thus, leaf-equivalence is the strongest local notion of

equivalence that is actually tractable.

6.2 Algebraic Observations

Now that the importance of J(T ) is clear, we proceed to study its remarkable prop-

erties. The first clue that J(T ) is interesting arises by computing its determinant.

Lemma 6.7. The determinant of J(T ) is a scalar multiple of the discriminant of T .

Proof. We have an explicit formula for J , as shown in Appendix A, so this is a direct

computation (using Maple).

Corollary 6.8. If T has eight distinct roots, then the components of T give local

coordinates on B, and these coordinates descend to M .

Proof. When T has eight distinct roots, J is invertible, so ω, ϕ, and λ can be written

in terms of dT . Since T is a GL(2)-equivariant map on B, T descends to a map

M → V8/GL(2).

The relationship between the polynomial T and the matrix J(T ) continues beau-

tifully:

Lemma 6.9. If T is a nontrivial polynomial with k distinct roots, then the rank of

J is k + 1.
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Proof. This is directly verified by writing T = (h1x− g1y)(h2x− g2y) · · · (h8x− g8y),

imposing multiplicity on the hi’s and gi’s and computing the rank of J directly (using

Maple). Here are some examples of what appears for low values of k:

Suppose T = (h1x− g1y)8. All of the 3× 3 minors of J vanish. Of the 1296 2× 2

minors, 216 of them are nonzero, all of which are monomials of degree 16 in g1 and

h1.

Suppose T = (h1x− g1y)7(h2x− g2y). All of the 4× 4 minors of J vanish. Of the

7056 3× 3 minors, 2856 are nonzero, all of which are divisible by (h1g2 − h2g1). Of

these nonzero minors, 2851 minors are divisible by h1; a different 2851 are divisible

by g1, and 84 are divisible by h1g2 +h2g1. Up to scalar multiples, these are all of the

factors that appear.

Suppose T = (h1x − g1y)6(h2x − g2y)2. All of the 4 × 4 minors vanish. 5376 of

the 3× 3 minors are nonzero, all of which are divisible by (h1g2 − h2g1).

The computations continue in this way for all possible factorizations of T . More

complicated factors appear in the non-zero minors, but all are divisible by a term

that is appropriate to keep the existing roots of T distinct.

Lemma 6.10. Locally, there is a unique 2,3-integrable GL(2)-structure with T = 0,

and it is a local Lie group of dimension nine.

Proof. If T = 0, then Theorem 6.4 shows that the structure equations are those of a

local Lie group, as in Theorem 2.9.

Theorem 6.4 shows that the singular foliation of V8 defined by J(T ) provides a

leaf-classification of 2,3-integrable GL(2)-structures of degree 4. After a review of

the GL(2) orbits on V8 in Chapter 7, this classification is identified in Chapter 8.
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7

The Binary Octics

This chapter is dedicated to the structure of the space V8 and the action on it

by GL(2,R), which by Theorem 6.4 is helpful in identifying the leaf-equivalence

classes of 2,3-integrable GL(2)-structures of degree 4. This is closely related to a

well-studied problem in algebraic geometry, the moduli space of curves with marked

points [HM98]. However, the naive perspective taken in this chapter is sufficient for

the local classification of 3-integrable GL(2)-structures of degree 4.

Fix v ∈ V8. Let Stab(v) ⊂ GL(2,R) denote the stabilizer of v. Recall the orbit-

stabilizer theorem: v ·GL(2,R) ∼= GL(2,R)/Stab(v), and v ·GL(2,R) = v̂ ·GL(2,R)

implies Stab(v) is conjugate to Stab(v̂). In particular, this implies that no orbit has

dimension greater than dimGL(2,R) = 4. Since dimV8 = 9, even the largest orbits

are numerous and fail to be open. These orbits are extraordinarily complicated and

poorly understood.

While homogeneous binary polynomials of lesser degree have been carefully stud-

ied in [Ell96], [Olv90], and elsewhere, to my knowledge the orbits of GL(2,R)

on V8 have never been enumerated. However, the general problem of describing

V8/GL(2,R) has been well-studied. Classically, [Ell96] provides a normal form for
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binary “octavics” and describes some invariants. Using the moving-frame methods

of Cartan, [BO00] provides invariants that help distinguish the orbits of GL(2,C)

on V8. These results more-or-less directly apply to the present problem as long as

we restrict our attention to GL(2,R) ⊂ GL(2,C). Using modern algebro-geometric

techniques, [Chu06] (revised in [Chu07]) makes a careful study of real binary octics

that are stable in the sense of Mumford’s geometric invariant theory and extends the

study of complex binary octics seen in [MY93]. For our purposes, these advanced

results are mostly unnecessary, but their depth emphasizes our extraordinary luck

that the J-leaves are as easily understood as they turn out to be in Chapter 8.

7.1 Linear-Fractional Transformations and Root-Types

Let P8 denote the 9-dimensional vector space of polynomials of degree at most eight

in the variable p. There is an isomorphism Φ : V8 → P8 via f(x, y) 7→ F (p) = f(p, 1)

with inverse F (p) 7→ f(x, y) = F (x
y
)y8. The action of GL(2,R) on P8 is given by

F (p) · g 7→ F
(
αp+β
γp+δ

)
(γp+ δ)8 where αδ − γβ 6= 0.

One can directly compute that Φ respects the GL(2,R) actions, so Φ is an isomor-

phisms between these two 9-dimensional (irreducible) representations of GL(2,R).

Therefore, any statement about the orbits or stabilizers of the GL(2,R) action on

P8 has a corresponding statement for V8.

The advantage of considering P8 is that we can directly apply the theory of linear-

fractional transformations on the Riemann sphere. The action of GL(2,C) on CP1 is

given by p 7→ αp+β
γp+δ

where α, β, γ, δ ∈ C and αδ−γβ 6= 0. We are concerned with the

subgroup GL(2,R) where α, β, γ, δ are real. The next four lemmas are easy exercises

from elementary complex analysis [Ahl78] [Con78].

Lemma 7.1 (Invertibility of linear-fractional transformations). Linear-fractional

transformations are one-to-one. Hence, S(z) = S(w) if and only if z = w.
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Lemma 7.2 (Circles to Circles). Given z1, z2, z3 distinct in CP1 and w1, w2, w3 dis-

tinct in CP1, there is a unique linear-fractional transformation S such that S(z1) =

w1, S(z2) = w2, and S(z3) = w3.

Lemma 7.3 (Real linear-fractional transformations). Any linear-fractional transfor-

mation S such that S(RP) = RP may be written with real coefficients. Conversely,

any real linear-fractional transformation maps RP to itself.

Lemma 7.4 (Symmetry Principle). Let S be a real linear-fractional transformation.

Then S(z) = S(z) for all z ∈ C.

Applying these four lemmas, we arrive at a simple and well-known observation

that is surprisingly advantageous to our cause.

Theorem 7.5 (Root-types are preserved). For f(x, y) ∈ V8, the multiplicity and

complex type of the roots are preserved under the GL(2,R) action.

Proof. For notational simplicity, we instead work with Φ(f) = F ∈ P8, factored as

f = A
m∏
k=1

(p+ gk)
rk , r1 + r2 + · · ·+ rm = 8 (7.1)

where gk ∈ CP1 and gk 6= gj for k 6= j

Fix g =

(
α β
γ δ

)
∈ GL(2,R). Then

F (p) · g = (γp+ δ)8A
m∏
k=1

((
αp+ β

γp+ δ

)
+ gk

)rk

= A
m∏
k=1

((α + gkγ)p+ (β + gkδ))
rk

(7.2)

Hence, the root gk has been moved to S(gk) = δgk+β
γgk+α

∈ CP1. Since δα−βγ 6= 0, S

is a linear-fractional transformation. Therefore, gk 6= gj implies S(gk) 6= S(gj), so the
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number and multiplicity of roots is unchanged. Since the action is by GL(2,R), real

roots remain real. If there are complex-conjugate roots, gk = gj, then the Symmetry

Principle implies that their images are also complex-conjugate: S(gk) = S(gk) =

S(gj).

Bearing in mind this theorem, we establish a notation for the root-types of a

factored polynomial F (p) or f(x, y). Sort the exponents r1 ≥ r2 ≥ · · · ≥ rm where

r1 + r2 + · · · + rm = 8. This partition of 8 is written as {r1, r2, . . . , rm}. If gk

and gk+1 are complex-conjugate, then we note this by enclosing their exponents in

square-braces: {r1, . . . , [rk, rk+1], . . . , rm}. Denote the root-type containing f(x, y)

by [f(x, y)]. For example, [x4(x + iy)2(x − iy)2] = {4, [2, 2]}. Let {0} denote the

trivial root-type, the zero polynomial. There are 54 non-trivial root-types in V8,

as represented in Figure 7.1. In Figure 7.1, arrows mean “closure contains,” and

arrows are transitive. Shaded nodes represent root-types that contain exactly one

orbit. Oval nodes represent open root-types; the square node represents the nearly-

closed root-type, {8} = (C \ 0) ⊂ V8. Hexagonal nodes represent root classes that

are neither closed nor open. Note that strictly real root-types have two connected

components; for example, {8} is comprised of the two ends of the cone C.

7.2 Symmetries of Polynomials

The root-types are a coarse view of V8/GL(2,R). More detailed results can be

obtained through the use of covariants of algebraic curves, which can be derived

using another interpretation of Cartan’s method of equivalence as seen in [Olv90].

This section is a summary some useful results of Peter Olver and Irina Kogan (née

Berchenko) that appear in [Olv90] and [BO00].

A covariant of weight k is a function C : V8 → R such that C(f ·g) = det(g)kC(f)

for any linear-fractional transformation g ∈ GL(2,C). The first non-trivial example
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of a covariant is H(f) = fxxfyy − (fxy)
2, which has weight 2. Another example, for

F = Φ(f), is

T (F ) = −n2(n− 1)

(
F 2F ′′′ − 3

n− 1

n
FF ′F ′′ + 2

(n− 1)(n− 2)

n2
(F ′)3

)
, (7.3)

which is not to be confused with the torsion of a GL(2)-structure. The symmetry

group of f ∈ V8 is the stabilizer group, Stab(f) = {g ∈ GL(2,C) : f · g = f} ⊂

GL(2,C). When Stab(f) is a Lie subgroup of GL(2,C), we let stab(f) denote its Lie

algebra in gl(2,C). The use of covariants in [Olv90] and [BO00] provides an efficient

algorithm that determines the symmetry group of a given polynomial.

Theorem 7.6 ([Olv90] Theorem 6.4). Let f(x, y) be a complex binary octic. Then

Stab(f) is:

1. A 2-parameter group if and only if H ≡ 0 if and only if Φ(f) is in the same

GL(2,C) orbit as a constant.

2. A 1-parameter group if and only if H 6≡ 0 and T 2 is a constant multiple of

H3 if and only if Φ(f) is in the same GL(2,R) orbit as a monomial pk with

k 6= 0, 8.

3. A finite group, otherwise.

The next theorem is originally in [Bli17], but it is re-proven in [BO00].

Theorem 7.7 ([BO00] Theorem 3.3). Any finite subgroup of PGL(2,C) is conjugate

to one of the following:

1. The n-element cyclic group, Zn, generated by p 7→ ωp where ω is a primitive

nth root of unity.

2. The 2n-element dihedral group, Dn, generated by adjoining p 7→ 1/p to Zn.
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3. The 12 element tetrahedral group T generated by σ : p 7→ −p and τ : p 7→ ip+i
p−1

4. The 24-element octahedral group, O, generated by adjoining p 7→ ip to T

In the case of PGL(2,R), the subgroups T and O cannot appear, since they (and

their conjugates) must have non-real elements; therefore, the only finite symmetry

groups available are Zn and Dn.

7.3 Orbits and Stabilizers

7.3.1 One root

If f(x, y) has one real root of multiplicity 8, then f(x, y) ∈ C, the rational normal

cone in V8. As previously described, {8} is the orbit of dimension 2, and the stabilizer

of an element is a Lie group of dimension 2. For example the Lie algebra stab(x8) is

spanned by H− 8I and X. This is root-type {8} and is case (1) of Theorem 7.6.

7.3.2 Two roots

If f(x, y) has two distinct roots, then [f(x, y)] is a single GL(2,R)-orbit. F (x) =

Φ(f(x, y)) has 1-dimension stabilizer as in case (2) of Theorem 7.6, and there is some

g ∈ GL(2,C) such that F (p) · g = pk for some 1 ≤ k ≤ 8. Thus f(x, y) · g = xky8−k.

When k = 1, 2, 3, the we can choose real g such that the roots of F are moved

anywhere in RP1. This is also true when k = 4 and both roots are real. If k = 4 and

the roots of F are complex-conjugates, then complex-conjugacy is preserved by any

real linear-fractional transformation. Hence, there are five distinct three-dimensional

root-types, enumerated as:

1. [x7y], with root-type {7, 1} = Q \ C and stab(x7y) spanned by H− 6I;

2. [x6y2], with root-type {6, 2} and stab(x6y2) spanned by H− 4I;

3. [x5y3], with root-type {5, 3} and stab(x5y3) spanned by H− 2I;
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4. [x4y4], with root-type {4, 4} and stab(x4y4) spanned by H; and

5. [(x+ iy)4(x− iy)4], with root-type {[4, 4]} and stab((x+ iy)4(x− iy)4) spanned

by X + Y.

7.3.3 Three roots

With three distinct roots, the possible root-types are {6, 1, 1}, {6, [1, 1]}, {5, 2, 1},

{4, 3, 1}, {4, 2, 2}, and {4, [2, 2]}. Each of these root-types is a single orbit, since

a linear-fractional transformation allows specification of three points. Using the

Maple code kindly provided by Olver and Kogan and described in [BO00], we can

compute the stabilizer groups for representatives from each orbit:

1. Stab({6, 1, 1}} is Z2, generated by p 7→ p/(p− 1) on P8;

2. Stab({6, [1, 1]}} is Z2, generated by p 7→ −p on P8;

3. Stab({5, 2, 1}} is trivial;

4. Stab({4, 3, 1}} is trivial;

5. Stab({4, 2, 2}} is Z2, generated by p 7→ p/(p− 1) on P8;

6. Stab({4, [2, 2]}} is Z2, generated by p 7→ −p on P8.

7.3.4 Many roots

If a polynomial f has more four or more roots, the stabilizer group Stab(f) must

be a finite group. The root-type [f ] is potentially comprised of infinitely many

orbits, since each orbit only has dimension three. The space [f ]/GL(2,R) may

be quite complicated. At least, it can have orbifold singularities; for example if

fε(x, y) = x2y2(x + y)2(x + (2 + ε)y)2, then Stab(f0) = D4, but Stab(fε) is trivial

for small ε 6= 0. The moduli of stable real binary octics (those with finite symmetry
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group) has enjoyed recent exposure in [Chu06] and [Chu07], following the study of

the complex case in [MY93]. Regarding the complexity of the space V8/GL(2,R), it

is shown that the space of stable real binary octics does not even admit the structure

of a Riemannian orbifold.
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8

Classification of 2,3-Integrable GL(2)-Structures in
Degree Four

Lemma 6.6 shows that a 2,3-integrable GL(2)-structure of degree 4 is locally deter-

mined by the value of T at a point. Cartan’s structure theorem shows that J-leaves in

V8 determine certain equivalence classes of connected 2,3-integrable GL(2)-structures

of degree 4. In this chapter we explicitly describe the leaf-equivalence classes of all

2,3-integrable GL(2)-structures of degree 4 by studying J(T ). Some of the repre-

sentatives’ structure equations describe solvable Lie algebras and the corresponding

open Lie groups can be given reasonable local coordinates.

8.1 Identifying the Leaves

Define an equivalence relation on V8 by declaring v ∼ w if and only if there exists

a finite sequence of connected pointed 2,3-integrable GL(2)-structures (Bi,Mi, pi)

for i = 0, . . . , k such that (Bi,Mi, pi) is GL(2)-equivalent to (Bi−1,Mi−1, pi−1) for

i = 1, . . . , k with v ∈ T (π−1(p0)) and w ∈ T (π−1(pk)). In the language of Chapter 2,

this equivalence class is OJ(v), the J-leaf containing v.
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Because of Cartan’s structure theorem and Theorem 6.6, each J-leaf corresponds

to a leaf-equivalence class of 2,3-integrable GL(2)-structures of degree 4. Note that

the J-leaves must be GL(2)-invariant, since the fiber action on a GL(2)-structure is

an isomorphism. Hence, a J-leaf must be a union of GL(2) orbits in V8. Lemma 2.12

shows that each J-leaf is a connected manifold, and we can easily compute its tangent

space as

TvOJ(B) = DTb(TbB) = range J(v). (8.1)

It is possible to identify the J-leaves due to the remarkable matrix J . The fact

that [v] is GL(2)-invariant and that rk J(v) = dim[v] strongly suggest the following

theorem.

Theorem 8.1 (Leaf-Equivalence Classes). The root-types in V8 are exactly the leaf-

equivalence classes of 2,3-integrable GL(2)-structures of degree 4. That is,

[v] = OJ(v), ∀v ∈ V8. (8.2)

Proof. To prove this theorem, we can compute Tv[v] and compare it to TvOJ(v). If

they are the same for all v ∈ V8, then OJ(v) = [v] for all v.

Fix a root-type [v] and an arbitrary v ∈ [v]. By Equation (8.1), TvOJ(v) =

range J(v). For each column Ji(v) of the matrix J(v), solve D(v) = Ji(v) for D(v),

an arbitrary tangent to [v] at v. As it happens, these equations are easily solvable at

arbitrary points in all 54 non-trivial root-types and for all columns of J . Because both

the leaf-equivalence classes and the root-types partition V8 by smooth submanifolds,

and because TvOJ(v) = Tv[v] for all v ∈ V8, the partitions must be identical.

To illustrate the computations, consider v = (h1x + g1y)8, where [v] = {8}. An

arbitrary element of Tv[v] looks like D(v) = 8(H1x + G1y)(h1x + g1y)7. Therefore,

we must solve D(v) = Ji(v) for H1 and G1 in each of the cases i = 1, . . . , 9. As

it happens, the first five columns of J(v) are all zero in this case, so the solution
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is H1 = G1 = 0. For the remaining four columns, the solutions are elementary to

compute as well.

For the other root-types, the computations are similar but somewhat more com-

plicated. All that matters is the fact that they can be solved for arbitrary v.

8.2 Structure Reduction

To see the “essential” structure of a 2,3-integrable GL(2)-structure of degree 4, we

now reduce the structure group. Fix (B,M, p) and v ∈ T (B). Let B̃(v) = {b ∈

B : T (b) = v}. B̃(v) is a sub-bundle with fiber Stab(v) < GL(2). The structure

equations for B̃(v) show no dependence on T (as it has been fixed), so the reduction

from GL(2) to Stab(v) effectively simplifies the structure equations from requiring

Cartan’s structure theorem to requiring only Lie’s third fundamental theorem. After

the structures have been reduced, local coordinates may be obtained on B̃(v) using

only the flow-box theorem. Thus, a neighborhood in B̃(v) may be represented by a

local Lie group, and M is locally the symmetric space B̃(v)/Stab(v).

To compute the reduced structures, recall the stabilizers computed by [BO00]

and summarized in Chapter 7.

8.2.1 One Root

Suppose v ∈ T (B) lies in the unique 2-dimensional root-type, {8} = C \ 0. Since {8}

is itself a GL(2) orbit, T (B) 3 v′ for all v′ ∈ {8}, so we may as well assume that

v = x8. Stab(x8) is a two-dimensional Lie subgroup and its Lie algebra is spanned by

H− 8I and X. Notice that dT−8(x8) = λ+ 16ϕ0 and dT−6(x8) = 2ϕ2 while dTk = 0

for k > −6. In particular, dT is a vertical 1-form on B, so T only varies along the

GL(2) fiber of B. Therefore, the value of T/GL(2) is locally constant as [x8] on

M . The stabilizer algebra may be computed as stab(x8) = ker dT (x8). In any case,

the reduced bundle B̃(x8) has a 2-dimensional fiber over M5. The reduced structure
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equations are given in Equation (8.3); they describe the structure of a solvable Lie

algebra and are integrated and studied in Section 8.3.

dω−4 = 24 ϕ0 ∧ ω−4 − 8 ϕ−2 ∧ ω−2 + 2 · 322560 ω0 ∧ ω4,

dω−2 = 20 ϕ0 ∧ ω−2 − 6 ϕ−2 ∧ ω0 + 322560 ω2 ∧ ω4,

dω0 = 16 ϕ0 ∧ ω0 − 4 ϕ−2 ∧ ω2,

dω2 = 12 ϕ0 ∧ ω2 − 2 ϕ−2 ∧ ω4,

dω4 = 8 ϕ0 ∧ ω4,

dϕ0 = 0, dϕ−2 = 4 ϕ0 ∧ ϕ−2.

(8.3)

8.2.2 Two Roots

Each of the 3-dimensional root-types is a single GL(2)-orbit. Again, T (B) = [v]

for any v in the root-type, so an arbitrary representative v may be chosen for any

(B,M, p). Each v has a 1-dimensional stabilizer, which is a Lie subgroup of GL(2).

The corresponding Lie algebras have already been computed in Chapter 7, but it

worthwhile to examine the nature of J(v) in each case. In all cases, dT has both

vertical and semi-basic components, so the embedding of the stabilizer fiber group

varies over M . The reduced structure B̃(v) is a 6-dimensional Lie group.

The root-type {7, 1} = Q\C gives the tangent developable of C and is represented

by v = x7y. The stabilizer algebra can be described as

ker dT (v) = ker{−100800ω4 − ϕ−2, λ+ 12ϕ0, ϕ
2}. (8.4)
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Imposing these conditions, the reduced structure equations are

dω−4 = −20 ω−4 ∧ ϕ0 − 967680 ω−2 ∧ ω4 − 322560 ω0 ∧ ω2,

dω−2 = −16 ω−2 ∧ ϕ0 − 645120 ω0 ∧ ω4,

dω0 = −12 ω0 ∧ ϕ0 − 322560 ω2 ∧ ω4,

dω2 = −8 ω2 ∧ ϕ0,

dω4 = −4 ω4 ∧ ϕ0,

dϕ0 = 0.

(8.5)

The root-type {6, 2} is represented by v = x6y2. The stabilizer algebra can be

described as

ker dT (v) = ker{28800ω2 − 1/2ϕ−2,−28800ω4 + 1/4λ+ 2ϕ0, ϕ2}. (8.6)

Imposing these conditions, the reduced structure equations are

dω−4 = −16 ω−4 ∧ ϕ0 + 138240 ω−4 ∧ ω4 + 645120 ω−2 ∧ ω2,

dω−2 = −12 ω−2 ∧ ϕ0 + 103680 ω−2 ∧ ω4 + 322560 ω0 ∧ ω2,

dω0 = −8 ω0 ∧ ϕ0 + 69120 ω0 ∧ ω4,

dω2 = −4 ω2 ∧ ϕ0 + 34560 ω2 ∧ ω4,

dω4 = 0, dϕ0 = 0.

(8.7)

The root-type {5, 3} is represented by v = x5y3. The stabilizer algebra can be

described as

ker dT (v) = ker{−43200ω0−3/2ϕ−2, 28800ω2 +1/8λ+1/2ϕ0,−2880ω4 +ϕ2}. (8.8)
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Imposing these conditions, the reduced structure equations are

dω−4 = −12 ω−4 ∧ ϕ0 − 276480 ω−4 ∧ ω2 − 322560 ω−2 ∧ ω0,

dω−2 = −8 ω−2 ∧ ϕ0 − 184320 ω−2 ∧ ω2,

dω0 = −4 ω0 ∧ ϕ0 − 92160 ω0 ∧ ω2,

dω4 = 4 ω4 ∧ ϕ0 + 230400 ω2 ∧ ω4,

dω2 = 0, dϕ0 = 0.

(8.9)

The root-type {4, 4} is represented by v = x4y4. The stabilizer algebra can be

described as

ker dT (v) = ker{11520ω−2 − ϕ−2,−276480ω0 + λ, 11520ω2 + ϕ2}. (8.10)

Imposing these conditions, the reduced structure equations are

dω−4 = 322560 ω−4 ∧ ω0 − 8 ω−4 ∧ ϕ0,

dω−2 = 161280 ω−2 ∧ ω0 − 4 ω−2 ∧ ϕ0,

dω2 = −161280 ω0 ∧ ω2 + 4 ω2 ∧ ϕ0,

dω4 = −322560 ω0 ∧ ω4 + 8 ω4 ∧ ϕ0,

dω0 = 0, dϕ0 = 0.

(8.11)

The root-type {[4, 4]} is represented by v = (x2 +y2)4. The stabilizer algebra can

be described as

ker dT (v) = ker


ω−4 − ω4 − 1/46080ϕ0,

ω−2 + ω2 + 1/184320ϕ−2 − 1/184320ϕ2,

ω0 + ω4 + 1/2211840λ+ 1/92160ϕ0.

 (8.12)

Imposing these conditions, the reduced structure equations are surprisingly compli-
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cated:

dω−4 = −1935360 ω−4 ∧ ω0 − 645120 ω−4 ∧ ω4 + 8 ω−2 ∧ ϕ−2

+ 737280 ω−2 ∧ ω2 + 645120 ω0 ∧ ω4,

dω−2 = 783360 ω−4 ∧ ω−2 − 2488320 ω−2 ∧ ω0 − 967680 ω−2 ∧ ω4 − 2 ω−4 ∧ ϕ−2

− 506880 ω−4 ∧ ω2 + 6 ω0 ∧ ϕ−2 + 322560 ω2 ∧ ω4 − 92160 ω0 ∧ ω2,

dω0 = 1290240 ω−4 ∧ ω0 − 1290240 ω0 ∧ ω4 − 4 ω−2 ∧ ϕ−2

− 737280 ω−2 ∧ ω2 + 4 ω2 ∧ ϕ−2,

dω2 = 967680 ω−4 ∧ ω2 + 1382400 ω0 ∧ ω2 − 1152000 ω2 ∧ ω4

+ 2 ω4 ∧ ϕ−2 − 6 ω0 ∧ ϕ−2 + 1198080 ω−2 ∧ ω0

+ 138240 ω−2 ∧ ω4 − 322560 ω−4 ∧ ω−2,

dω4 = 645120 ω−4 ∧ ω4 + 1935360 ω0 ∧ ω4 − 8 ω2 ∧ ϕ−2 + 737280 ω−2 ∧ ω2

− 645120 ω−4 ∧ ω0,

d ϕ−2 = 184320 ω−4 ∧ ϕ−2 − 184320 ω4 ∧ ϕ−2 − 42467328000 ω−4 ∧ ω−2

+ 118908518400 ω−2 ∧ ω0 − 118908518400 ω0 ∧ ω2

− 42467328000 ω−4 ∧ ω2 + 76441190400 ω−2 ∧ ω4 + 76441190400 ω2 ∧ ω4.

(8.13)

8.2.3 Three Roots

Each of the 4-dimensional root-types is a single GL(2)-orbit, so T (B) = [v] for any

v in the root-type, so an arbitrary representative v may be chosen for any (B,M, p).

Each v has a finite stabilizer that appears in Theorem 7.7. Hence, B̃(v) is a finite

cover of M5. The fiber of the finite cover can be determined using the algorithms

described in [BO00] and implemented in Maple, but the relations that compute to

the pull-back of (ϕ, λ) in terms of the semi-basic form ω again arise by examining

0 = dT (v).

The root-type {6, 1, 1} is represented by v = x6y(x− y). The image under pull-
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back of (ϕ, λ) is computed by the relations

ϕ−2 = −57600 ω2 − 100800 ω4,

ϕ0 = 72000 ω4,

ϕ2 = 0,

λ = −691200 ω4.

(8.14)

The root-type {5, 2, 1} is represented by v = x5y2(x − y). The image under

pull-back of (ϕ, λ) is computed by the relations

ϕ−2 = 28800 ω0 + 57600 ω2,

ϕ0 = −57600 ω2 + 8640 ω4,

ϕ2 = −2880 ω4,

λ = 46080 ω4 + 460800 ω2.

(8.15)

The root-type {4, 3, 1} is represented by v = x4y3(x − y). The image under

pull-back of (ϕ, λ) is computed by the relations

ϕ−2 = −11520 ω−2 − 28800 ω0,

ϕ0 = 40320 ω0 − 23040 ω2,

ϕ2 = 11520 ω2 + 2880 ω4,

λ = −276480 ω0 − 138240 ω2.

(8.16)

The root-type {3, 3, 2} is represented by v = x3y3(x − y)2. The image under

pull-back of (ϕ, λ) is computed by the relations

ϕ−2 = −2880 ω−4 − 23040 ω−2 − 28800 ω0,

ϕ0 = 23040 ω−2 − 23040 ω2,

ϕ2 = 28800 ω0 + 23040 ω2 + 2880 ω4,

λ = −138240 ω−2 − 230400 ω0 − 138240 ω2.

(8.17)
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The root-type {4, 2, 2} is represented by v = x4y2(x − y)2. The image under

pull-back of (ϕ, λ) is computed by the relations

ϕ−2 = 11520 ω−2 + 57600 ω0 + 57600 ω2,

ϕ0 = −40320 ω0 − 34560 ω2 + 8640 ω4,

ϕ2 = −11520 ω2 − 5760 ω4,

λ = 276480 ω0 + 46080 ω4 + 276480 ω2.

(8.18)

The root-type {6, [1, 1]} is represented by v = x6(x2 + y2). The image under

pull-back of (ϕ, λ) is computed by the relations

ϕ−2 = 57600 ω2,

ϕ0 = −72000 ω4,

ϕ2 = 0,

λ = 691200 ω4.

(8.19)

The root-type {4, [2, 2]} is represented by v = x4(x2 + y2)2 The image under

pull-back of (ϕ, λ) is computed by the relations

ϕ−2 = 11520 ω−2 − 46080 ω2,

ϕ0 = −40320 ω0 − 63360 ω4,

ϕ2 = −11520 ω2,

λ = 276480 ω0 + 92160 ω4.

(8.20)

The root-type {[3, 3], 2} is represented by v = x2(x2 + y2)3 The image under

pull-back of (ϕ, λ) is computed by the relations

ϕ−2 = −126720 ω−2 − 149760 ω2,

ϕ0 = −8640 ω−4 − 40320 ω0 − 54720 ω4,

ϕ2 = −57600 ω−2 − 34560 ω2,

λ = 46080 ω−4 − 460800 ω0 − 506880 ω4.

(8.21)
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8.2.4 Many Roots

Suppose dim[v] ≥ 4; Theorem 7.6 implies Stab(v) is a finite subgroup that appears

in Theorem 7.7. Hence, B̃(v) is a finite cover of M5. The fiber of the finite cover

can be determined using the algorithms described in [BO00] and implemented in

Maple. However, there is a priori no reason to believe that T (B) ⊂ [v] implies

T (B) = [v]. In fact, we see in Section 8.4 that B with T (B) = [v] fails to exist even

for the reasonably simple case of [v] = {2, 2, 2, 2}.

8.3 Structure Integration

By integrating the reduced structure equations, we can find reasonable local coor-

dinates in which to write the right-invariant co-frame (ω, λ, ϕ). With the co-frame

written in local coordinates, we can find explicit formulas for the distribution of

rational normal cones and the tri-secant 3-folds in local coordinates on M .

8.3.1 One Root

Assume (B,M, p) has T (B) = {8} = C \ 0. The reduced structure equations are

given in Equation (8.3). These are the structure equations for a solvable Lie algebra,

and the equations can be explicitly integrated “by quadrature.” In particular, B̃(x8)

has coordinates (ξ−4, ξ−2, ξ0, ξ2, ξ4, a, b) with N = 322560 such that
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ϕ0 = a−1 da

ϕ−2 = a4 db,

ω4 = a8 dξ4,

ω2 = a12
(
dξ2 − 2b dξ4

)
,

ω0 = a16
(
dξ0 − 4b dξ2 + 4b2 dξ4

)
,

ω−2 = a20
(
dξ−2 − 6b dξ0 + 12b2 dξ2 − 8b3 dξ4 −Nξ4 dξ2

)
,

ω−4 = a24
(
dξ−4 − 8b dξ−2 + 24b2 dξ0 − 32b3 dξ2 + 16b4 dξ4+

8Nξ4b dξ2 − 2Nξ4 dξ0
)
.

(8.22)

Now we can reconstruct the distribution of rational normal cones, C ⊂ TM , and

begin to understand the “most symmetric” GL(2)-structure in terms of the local

coordinate ξ. Recall that v ∈ Cp ⊂ TpM if and only if up(v) ∈ C ⊂ V4 for every

u ∈ Bp. Hence, v ∈ Cp if and only if for any w ∈ TuB with π(u) = p and π∗(w) = v

we have ωu(w) = u ◦ π∗(w) ∈ C ⊂ V4. The tautological form pulls-back to B̃(x8), so

there is a natural lift of C to TB̃(x8). The condition for w ∈ C is



0 = ω−4(w)ω0(w)− ω−2(w)ω−2(w)

0 = ω−4(w)ω2(w)− ω−2(w)ω0(w)

0 = ω−4(w)ω4(w)− ω−2(w)ω2(w)

0 = ω−2(w)ω2(w)− ω0(w)ω0(w)

0 = ω−2(w)ω4(w)− ω0(w)ω2(w)

0 = ω0(w)ω4(w)− ω2(w)ω2(w)

(8.23)

Writing w = wa
∂
∂a

+ wb
∂
∂b

+ w−4
∂

∂ξ−4 + w−2
∂

∂ξ−2 + w0
∂
∂ξ0

+ w2
∂
∂ξ2

+ w4
∂
∂ξ4

, Equation

(8.23) admits several types of solutions:

{w−2 = 0,w0 = 0,w2 = 0,w4 = 0}; (8.24)
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
w−4 = 32w2b3 + 8Nw2ξ4b,

w−2 = 12w2b2 +Nw2ξ4,

w0 = 4w2b,

w4 = 0

 ; (8.25)


w−4 = (w2)2(2N(w4)2ξ4 + (w2)2)/(w4)3,

w−2 = w2(N(w4)2ξ4 + (w2)2)/(w4)2,

w0 = (w2)2/w4

 ; and (8.26)


w−4 = −16b

(
−N

2
w2ξ4 + 3w4b3 − 2w2b2 + N

2
w4ξ4b

)
,

w−2 = Nw2ξ4 − 16w4b3 + 12w2b2,

w0 = −4w4b2 + 4w2b

 . (8.27)

These equations essentially construct a distribution of rational-normal cones C over

a contractible manifold of dimension 5 that corresponds to the 3-integrable GL(2)-

structure of type {8}.

8.3.2 Two roots

Consider now Q \ C = {7, 1} = [x7y]. Integrating the reduced structure equations

given in Equation (8.5), we obtain local coordinates (ξ−4, ξ−2, ξ0, ξ2, ξ4, a) on B̃(x7y)

given by

ϕ0 = a−1da,

ω4 = a4dξ4,

ω2 = a8dξ2,

ω0 = a12
(
dξ0 +Nξ4dξ2

)
,

ω−2 = a16
(
dξ−2 + 2Nξ4dξ0 −N2ξ2d(ξ4ξ4

)
,

ω−4 = a20
(
dξ−4 + 3Nξ4dξ−2 +Nξ2dξ0 − 3N2ξ0d(ξ4ξ4)

)
.

(8.28)

To construct the distribution of rational normal cones, C ⊂ TB̃(x7y), we again use

Equation (8.23) to obtain several types of solution vector w ∈ C:

{w−2 = 0,w0 = 0,w2 = 0,w4 = 0}; (8.29)
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
w−4 = N2ξ2ξ4w2 − 6N3(ξ4)3w2

w−2 = 2N2(ξ4)2w2

w0 = −Nw2ξ4

w4 = 0

 ; (8.30)



w−4 = −(−6N2(w4)4ξ0ξ4 −N2w2(w4)3ξ2ξ4

+N(w4)2ξ2(w2)2 + 6N3(w4)4(ξ4)2ξ2 + 6N3(w4)3(ξ4)3w2

−6N2(w4)2(ξ4)2(w2)2 + 3Nw4ξ4(w2)3 − (w2)4)/(w4)3

w−2 = (2N2(w4)3ξ2ξ4 + 2N2(w4)2(ξ4)2w2 − 2N(w2)2w4ξ4

+(w2)3)/(w4)2

w0 = −w2(Nw4ξ4 −w2)/w4


; and (8.31)


w−4 = −N2ξ4(−6w4ξ0 − ξ2w2 + 6Nw4ξ2ξ4 + 6N(ξ4)2w2)

w−2 = 2N2ξ4(w4ξ2 + w2ξ4)

w0 = −Nw2ξ4

 . (8.32)

Again, these equations essentially construct a distribution of rational-normal cones

C over a contractible manifold of dimension 5 that corresponds to the 3-integrable

GL(2)-structure of type {7, 1}.

With the structure equations provided in Section 8.2 for the other root-types of di-

mension three, the distribution of rational normal cones can similarly be constructed

there.

8.3.3 Many Roots

This process can be repeated for the higher root-types as well, assuming the reduced

structure equations are those of a solvable Lie algebra. If the Lie algebra is not

solvable, then integrating “by quadrature” in the sort of triangular form seen in

Equation 8.22 is not possible, but less natural coordinates could still be found. When

the reduced bundle B̃ has finite fiber, the bundle is a finite cover of M ; hence, the

local coordinates on B̃ are also local coordinates on M .

If the goal is to write the canonical co-frame in terms of local coordinates on

(B,M, p), then this is trivial for the five open root-types. Since 9 = dimOJ(T (B)),
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J(T ) is invertible, so the vector components of T provide local coordinates on B.

8.4 Lack of Generating Examples

Given a root-type [v], does there exist (B,M, p) such that T (B) = OJ(v) = [v]?

Certainly the answer is “yes” for root-types with three or fewer distinct roots (the

shaded nodes in Figure 7.1); each of these root-types is a single GL(2)-orbit, so

T (π−1(p)) maps onto the entire root-type for any p ∈M .

For the higher-dimensional root-types, the answer is probably “no.” Consider the

root-type {2, 2, 2, 2}, which is arguably the simplest of the multi-orbit root-types.

Recall the observation from Section 7.3.4 that {2, 2, 2, 2}/GL(2,R) has an orbifold

singularity at x2y2(x+y)2(x+2y)2. If the submersion T : B → {2, 2, 2, 2} were onto,

then the induced submersion T/GL(2) : M → {2, 2, 2, 2}/GL(2) would also be onto,

thus ill-defined. Topologically, this root-type retracts onto the space of 4 (distinct)

marked points on RP1, modulo the action of PGL(2,R). To prove that the answer

is definitely “no” for all higher root-types, one would need to find similar orbifold

singularities in each of the remaining 39 root-types.

8.5 The Classification

The 55 leaf-equivalence classes of 2,3-integrable GL(2) structures of degree 4 are

represented in Figure 8.1. The tree is isomorphic to Figure 7.1, since Theorem 8.1

proves that the leaf-equivalence classes are the root-types. In Figure 8.1 arrows

mean “closure contains,” and arrows are transitive. The pentagonal nodes represent

classes that reduce to structures of total dimension 5 with 0-dimensional fiber. The

hexagonal nodes represent classes that reduce to structures of total dimension 6

with 1-dimensional fiber. The heptagonal node represents the class that reduces to

a structure of total dimension 7 with 2-dimensional fiber. The circular node is the
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trivial root-type, which corresponds to the unique flat structure. The shaded nodes

represent those that are integrated to a local Lie group in Section 8.3.
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9

PDEs and GL(2)-Structures in Degree Four

Now that a classification exists for 2,3-integrable GL(2) structures, new questions

present themselves regarding the motivating problem. Can we determine the torsion

of the GL(2)-structures for the PDEs studied by [FHK07]? More broadly, which

GL(2)-equivalence classes can be obtained from a PDE as described in [FHK07]?

Do any root-types correspond to integrable PDEs not studied by [FHK07]? These

questions amount to finding immersions of the structures into the symplectic group

such that the base manifold locally embeds into the Lagrangian Grassmannian.

9.1 Symplectic Structures

Fix a symplectic 2-form σ on R6. The symplectic group is a Lie group of dimension

21 defined by

Sp(3) = {A ∈ GL(6,R) : σ(Ax,Ay) = σ(x, y) ∀x, y ∈ R6}. (9.1)
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and the Lagrangian Grassmannian is Λσ = {P ∈ Gr3(R6) : σ|P = 0}. The

symplectic group Sp(3) has Maurer–Cartan form

η =

(
β γ
α −βt

)
=


β1

1 β1
2 β1

3 γ11 γ12 γ13

β2
1 β2

2 β2
3 γ12 γ22 γ23

β3
1 β3

2 β3
3 γ13 γ23 γ33

α11 α12 α13 −β1
1 −β2

1 −β3
1

α12 α22 α13 −β1
2 −β2

2 −β3
2

α13 α13 α33 −β1
3 −β2

3 −β3
3

 , α = αt, γ = γt. (9.2)

The Maurer–Cartan formula for η is

0 = dη + η ∧ η =

(
dβ + β ∧ β + γ ∧ α dγ + β ∧ γ − γ ∧ βt
dα + α ∧ β − βt ∧ α −dβt + α ∧ γ + βt ∧ βt

)
. (9.3)

At the identity in Sp(3), η restricts to the fiber as the condition α = 0, so α is

semi-basic for the bundle Sp(3)→ Λ.

If B →M is a GL(2)-structure arising from a second-order PDE as in Chapter 1,

then M is a hyper-surface in Λo, and the distribution of rational-normal cones C

over M is respected by the Sp(3) action on Λo. That is, B maps into Sp(3) such

that M is a hyper-surface in Λ and such that the fibers of B (the symmetries of C)

are immersed into the fibers of Sp(3).

To determine if such a map exists for a given B, it suffices to attempt to construct

a sp(3)-valued 1-form on B such that the Maurer–Cartan formula is satisfied. At the

risk of causing some minor confusion, we also refer to this section of T∗B ⊗ sp(3) as

η, so the requirement is that dη + η ∧ η = 0 where αij = Aijaω
a. If such a map η

exists, then by Fundamental Lemma of Lie Groups, B admits a local map to Sp(3)

as desired [IL03, Theorem 1.6.10].
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9.2 Solving Maurer–Cartan

Note that α : V4 → Sym2(R3) = Sym2(V2), and recall that for u, v ∈ V2 the sym-

metric tensor is given by

u−2

u0

v2

 ◦
v−2

v0

v2

 =
1

2

u−2v−2 + v−2u−2 u−2v0 + v−2u0 u−2v2 + v−2u2

u0v−2 + v0u−2 u0v0 + v0u0 u0v2 + v0u2

u2v−2 + v2u−2 u2v0 + v2u0 u2v2 + v2u2

 (9.4)

In particular, the degrees in an element of Sym2(V2) appear as follows:

−4 −2 0
−2 0 2
0 2 4

 (9.5)

Therefore, α must have the following form, for constants A−4, A−2, A0, A′0, A2, and

A4:

α =

A−4 ω
−4 A−2 ω

−2 A0 ω
0

A−2 ω
−2 A′0 ω

0 A2 ω
2

A0 ω
0 A0 ω

2 A4 ω
4

 . (9.6)

Writing β = βϕ(ϕ) + βλ(λ) + βT (ω), it is apparent that βϕ must be the repre-

sentation sl(2)→ M3×3(R) such that the natural action of M3×3(R) on Sym2(V2) is

induced by the natural action of sl(2) on ω ∈ V4. One can now easily to verify the

following formulas:

α =

ω−4 ω−2 ω0

ω−2 ω0 ω2

ω0 ω2 ω4

 ,

β =

 4ϕ0 2ϕ2 0
−4ϕ−2 0 4ϕ2

0 −2ϕ−2 −4ϕ0

− 1

2
λI + βT (ω)

(9.7)

All that remains is to find βT and γ. This is “merely” arithmetic, though it presses

the memory limits of common computer hardware (2 to 4 GiB) using systems such

as Maple and Macaulay2 unless the programmer is careful to limit the number of
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variables in each stage of the process. The computation can be achieved as follows.

Write βT and γ as arbitrary linear combinations of ω and ϕ, though one must allow

the coefficients to be functions, as they undoubtedly depend upon polynomials in T .

In particular, set {
(βT )ij = bij,aω

a

(γ)i,j = ci,ja ω
a + ĉi,ja ϕ

a
(9.8)

Using the dα part of Equation (9.3), we discover the following relations:

b1
1,−4 = b1

1,−4 b1
1,−2 = b1

1,−2 b1
1,0 = b1

1,0

b1
1,2 = 1290240T−2 b1

1,4 = −322560T−4 b1
2,−4 = −322560T6

b1
2,−2 = 1612800T4 + b1

1,−4 b1
2,0 = b1

1,−2 − 3225600T2 b1
2,2 = b1

1,0 + 3225600T0

b1
2,4 = −322560T−2 b1

3,−4 = −322560T8 b1
3,−2 = 1290240T6

b1
3,0 = −1612800T4 + b1

1,−4 b1
3,2 = b1

1,−2 b1
3,4 = b1

1,0 + 1612800T0

b2
1,−4 = b1

1,−2 − 645120T2 b2
1,−2 = b2

1,−2 b2
1,0 = b2

1,0

b2
1,2 = −2580480T−4 b2

1,4 = 645120T−6 b2
2,−4 = 645120T4

b2
2,−2 = −3870720T2 + b1

1,−2 b2
2,0 = b2

1,−2 + 6451200T0 b2
2,2 = −6451200T−2 + b2

1,0

b2
2,4 = 645120T−4 b2

3,−4 = 645120T6 b2
3,−2 = −2580480T4

b2
3,0 = 2580480T2 + b1

1,−2 b2
3,2 = b2

1,−2 b2
3,4 = −3225600T−2 + b2

1,0

b3
1,−4 = b1

1,0 + 1612800T0 b3
1,−2 = −2580480T−2 + b2

1,0 b3
1,0 = b3

1,0

b3
1,2 = 1290240T−6 b3

1,4 = −322560T−8 b3
2,−4 = −322560T2

b3
2,−2 = b1

1,0 + 3225600T0 b3
2,0 = −5806080T−2 + b2

1,0 b3
2,2 = 3225600T−4 + b3

1,0

b3
2,4 = −322560T−6 b3

3,−4 = −322560T4 b3
3,−2 = 1290240T2

b3
3,0 = b1

1,0 b3
3,2 = −2580480T−2 + b2

1,0 b3
3,4 = 1612800T−4 + b3

1,0

To simplify matters we make the assumption that any bij,a that is not explicitly
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solved for T is identically zero. That is, bij,a = 0 unless it appears in the following

list:

b1
1,2 = 1290240T−2 b1

1,4 = −322560T−4 b1
2,−4 = −322560T6

b1
2,−2 = 1612800T4 b1

2,0 = 3225600T2 b1
2,2 = 3225600T0

b1
2,4 = −322560T−2 b1

3,−4 = −322560T8 b1
3,−2 = 1290240T6

b1
3,0 = −1612800T4 b1

3,4 = 1612800T0 b2
1,−4 = 645120T2

b2
1,2 = −2580480T−4 b2

1,4 = 645120T−6 b2
2,−4 = 645120T4

b2
2,−2 = −3870720T2 b2

2,0 = 6451200T0 b2
2,2 = −6451200T−2

b2
2,4 = 645120T−4 b2

3,−4 = 645120T6 b2
3,−2 = −2580480T4

b2
3,0 = 2580480T2 b2

3,4 = −3225600T−2 b3
1,−4 = 1612800T0

b3
1,−2 = −2580480T−2 b3

1,2 = 1290240T−6 b3
1,4 = −322560T−8

b3
2,−4 = −322560T2 b3

2,−2 = 3225600T0 b3
2,0 = −5806080T−2

b3
2,2 = 3225600T−4 b3

2,4 = −322560T−6 b3
3,−4 = −322560T4

b3
3,−2 = 1290240T2 b3

3,2 = −2580480T−2 b3
3,4 = 1612800T−4

Hence, the coefficients of βT can be found explicitly in terms of the torsion T .

Now, using the dβ part of equation 9.3, all of the coefficients of γ can be established:
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ĉ1,1
−2 =1290240T6 ĉ1,1

0 =0 ĉ1,1
2 =1290240T2

ĉ1,2
−2 =− 6451200T4 ĉ1,2

0 =0 ĉ1,2
2 =0

ĉ1,3
−2 =12902400T2 ĉ1,3

0 =0 ĉ1,3
2 =− 7741440T−2

ĉ2,2
−2 =10321920T2 ĉ2,2

0 =0 ĉ2,2
2 =10321920T−2

ĉ2,3
−2 =− 25804800T0 ĉ2,3

0 =0 ĉ2,3
2 =15482880T−4

ĉ3,3
−2 =7741440T−2 ĉ3,3

0 =0 ĉ3,3
2 =− 7741440T−6

c1,1
−4 =− 1040449536000T0T8 + 4161798144000T2T6 − 2601123840000T 2

4

c1,1
−2 =2080899072000T2T4 − 7283146752000T0T6 + 3537528422400T−2T8

c1,1
0 =5202247680000T0T4 + 416179814400T−2T6 − 2705168793600T−4T8

− 2080899072000T 2
2

c1,1
2 =1040449536000T0T2 + 1040449536000T−6T8 + 416179814400T−4T6

c1,1
4 =− 208089907200T−2T2 − 148635648000T−6T6 − 163499212800T−8T8

− 2601123840000T 2
0

c1,2
−4 =− 1040449536000T2T4 − 2080899072000T0T6 + 2080899072000T−2T8

c1,2
−2 =14566293504000T0T4 − 8323596288000T−2T6 − 2913258700800T−4T8

c1,2
0 =− 14566293504000T0T2 + 1248539443200T−6T8 + 11653034803200T−4T6

c1,2
2 =− 4161798144000T−4T4 + 5202247680000T 2

0 − 4994157772800T−6T6

− 208089907200T−8T8

c1,2
4 =832359628800T−8T6 + 1040449536000T−6T4 + 4161798144000T−2T0
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c1,3
−4 =− 1248539443200T−4T8 + 2080899072000T 2

2 − 3745618329600T−2T6

+ 2601123840000T0T4

c1,3
−2 =− 24970788864000T0T2 + 18311911833600T−2T4 + 832359628800T−6T8

+ 8323596288000T−4T6

c1,3
0 =− 13317754060800T−2T2 − 4518523699200T−6T6 − 163499212800T−8T8

+ 33814609920000T 2
0 − 23306069606400T−4T4

c1,3
2 =14150113689600T−4T2 + 832359628800T−8T6 + 10404495360000T−6T4

− 16647192576000T−2T0

c1,3
4 =− 1768764211200T−8T4 − 2913258700800T−6T2 + 1248539443200T 2

−2

c2,2
−4 =− 3329438515200T−4T8 + 3329438515200T−2T6 + 1664719257600T 2

2

c2,2
−2 =18311911833600T−4T6 − 18311911833600T−2T4 − 8323596288000T0T2

+ 1664719257600T−6T8

c2,2
0 =− 34959104409600T−4T4 − 10404495360000T 2

0 − 9274864435200T−6T6

− 297271296000T−8T8 + 58265174016000T−2T2

c2,2
2 =− 4994157772800T−4T2 − 8323596288000T−2T0 + 1664719257600T−8T6

+ 18311911833600T−6T4

c2,2
4 =− 8323596288000T 2

−2 − 3329438515200T−8T4
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c2,3
−4 =4161798144000T−4T6 − 4161798144000T0T2 + 1664719257600T−6T8

c2,3
−2 =− 21641350348800T−4T4 + 26011238400000T 2

0 − 10701766656000T−6T6

− 326998425600T−8T8

c2,3
0 =2080899072000T−8T6 + 28300227379200T−6T4 − 60346073088000T−2T0

+ 44947419955200T−4T2

c2,3
2 =− 5410337587200T−8T4 − 38288542924800T−6T2 + 10404495360000T−4T0

+ 16647192576000T 2
−2

c2,3
4 =− 2497078886400T−4T−2 + 7075056844800T−8T2 + 2080899072000T−6T0

c3,3
−4 =1248539443200T−2T2 − 312134860800T−8T8 − 2080899072000T−6T6

− 2601123840000T 2
0

c3,3
−2 =10820675174400T−6T4 + 2080899072000T−8T6 + 2080899072000T−2T0

c3,3
0 =− 5826517401600T−8T4 + 5826517401600T 2

−2 − 22473709977600T−6T2

c3,3
2 =− 12485394432000T−4T−2 + 8739776102400T−8T2 + 18728091648000T−6T0

c3,3
4 =2497078886400T−6T−2 − 6242697216000T−8T0

All of the terms of η are now fixed, and one must merely verify that the dγ block

of Equation (9.3) is satisfied. (It is!) Because Equation (9.3) is satisfied identically

for any choice of T , there is a local bundle embedding B → Sp(3) for any of the 55

root-types. Since a Maurer–Cartan-valued 1-form η can be found for an open set of

T ∈ V8, this verifies the result of [FHK07] that there is an open orbit of PDEs with

a three-dimensional family of hydrodynamic reductions. Moreover, this particular

1-form η is well-defined for any value of T . Hence, a local embedding exists for any
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representative of any of the 55 equivalence classes. This provides a perfect converse

to Theorem 1.7.

Theorem 9.1 (All types are PDEs). Let (B,M, p) be a connected pointed 2,3-

integrable GL(2)-structure over M of dimension 5. There is a neighborhood N ⊂M

of p such that N embeds into Λo and the fibers of B|N immerse into the fibers of

Sp(3). In particular, N is an open subset of {U ∈ Λo : F (U) = 0} for some PDE

F (U) = 0 that is solvable by means of 3-parameter hydrodynamic reductions.
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10

Equivalence in Arbitrary Degree

In this chapter we solve the equivalence problem for arbitrary degreeGL(2)-structures.

The result is essentially identical to the degree 4 case examined in Theorem 4.1. The

resulting connection is used in Chapters 11 and 12 to study 2- and 3-integrability in

all higher degrees.

Let M be a manifold of dimension n + 1 ≥ 5, and let B be a GL(2)-structure

over M . Then B admits structure equations

dω = −〈ϕ, ω〉1 − 〈λ, ω〉0 + T (ω ∧ ω) (10.1)

where ω ∈ Γ(T∗B ⊗Vn) is the tautological form, and (ϕ, λ) ∈ Γ(T∗B ⊗ [sl(2)⊕V0])

is a connection. Note that the torsion T lies in the space

Vn ⊗ (∧2V∗n) = Vn ⊗ (V2n−2 ⊕ V2n−6 ⊕ · · · ⊕ V2n−2ν) . (10.2)

ν = 2dn/2e − 1 is simply the largest odd number p for which the pairing 〈ω, ω〉p is

nontrivial; it equals n if n is odd or n− 1 if n is even.

How much torsion can be absorbed by a change of connection?

Theorem 10.1. The map δ : gl(2)⊗Vn → Vn⊗(∧2Vn) has maximum rank. In other
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words, a change-of-connection P,Q ∈ (V2 ⊕V0)⊗V∗n allows absorption of torsion of

weight Vn−2, Vn (twice), and Vn+2.

The Clebsch–Gordon decomposition in Equation (10.2) breaks the torsion opera-

tor into irreducible components such that the torsion two-form T (ω∧ω) is described

by terms such as
〈
T 2n−2p
t , 〈ω, ω〉p

〉
q

where T 2n−2p
t ∈ Vt and n = t+ (2n− 2p)− 2q.

For a connection (ϕ, λ) ∈ Γ(T∗B ⊗ gl(2)), a change of connection is given by

∗ϕ = ϕ+ δP and ∗λ = λ+ δQ where (P,Q) ∈ gl(2)⊗ Vn decomposes as

Q ∈ Vn = R⊗ Vn, and

Pn−2 + Pn + Pn+2 ∈ (Vn−2 ⊕ Vn ⊕ Vn+2) = V2 ⊗ Vn = sl(2)⊗ Vn.
(10.3)

In binary-polynomial notation, the irreducible components of P and Q are written:

Q =
n∑
i=0

Q2i−n

(
n

i

)
xn−iyi ∈ Vn,

Pn =
n∑
j=0

Pn,2j−n

(
n

j

)
xn−jyj ∈ Vn,

Pn−2 =
n−2∑
k=0

Pn−2,2j−n+2

(
n− 2

j

)
xn−2−jyk ∈ Vn−2,

Pn+2 =
n+2∑
l=0

Pn+2,2l−n−2

(
n+ 2

l

)
xn+2−lyl ∈ Vn+2.

(10.4)

Since δP and δQ represent the irreducible representations of torsion that can be

absorbed by P and Q, Theorem 10.1 amounts to the claim that δQ, δPn, δPn−2, and

δPn+2 are nontrivial and that δPn is distinct from δQ. Hence, to prove Theorem 10.1

we explicitly compute the linear map δ on each component and verify that it has

maximal rank.

Lemma 10.2. δQ is non-trivial, so it has maximum rank n.
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Proof. The image of δQ is defined by

0 = δQ(ω ∧ ω)−Q(ω) ∧ ω. (10.5)

By the definition of the action by pairing,

V 3 Q(ω) = 〈Q,ω〉n = n!
n∑
a=0

(−1)a
(
n

a

)
Qn−2a ω

2a−n. (10.6)

Therefore,

Q(ω) ∧ ω = 〈〈Q,ω〉n , ω〉0 = 〈Q,ω〉n ∧ ω

=

(
n!

n∑
r=0

(−1)r
(
n

r

)
Qn−2r ω

2r−n

)
∧

(∑
s=0

(
n

s

)
xn−sys ω2s−n

)

= n!
n∑

r,s=0

(−1)r
(
n

r

)(
n

s

)
Qn−2rx

n−sys (ω2r−n ∧ ω2s−n)

(10.7)

δQ may lie in any representations of weight n in the space of torsion operators,

Vn ⊗ (∧2Vn). For p ∈ {1, 3, 5, . . . , ν} there are coefficients Cp(Q) such that

δQ(ω ∧ ω) =
∑
p

Cp(Q)
〈
Q, 〈ω, ω〉p

〉
n−p

. (10.8)

So, to compute the image of Q via δ is to compute the coefficients Cp(Q). These we

now compute:

δQ(ω ∧ ω) =
∑
p

Cp

〈
Q, 〈ω, ω〉p

〉
n−p

=
∑
p

Cp

n−p∑
b=0

(−1)b

(n− p)!

(
n− p
b

)
∂n−pQ

∂xn−p−b∂yb
∂n−p 〈ω, ω〉p
∂xb∂yn−p−b

=
∑
p

Cp

n−p∑
b=0

n∑
a,i,r,s=0

ZZ ′Q2i−n x
2n−i−r−syi+r+s−n ω2r−n ∧ ω2s−n,

(10.9)
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where

Z =

(
n

p

)(
n− p
b

)(
p

a

)
(−1)a+bn!n!(2n− r − s− p)!(r + s− p)!

(p+ b− i)!(i− b)!(2n− r − s− p− b)!(r + s+ b− n)!
,

Z ′ =
1

(n− r − p+ a)!(r − a)!(n− s− a)!(s− p+ a)!
.

(10.10)

Equation 10.5 must be solved simultaneously as an equation of Vn-valued two-

forms; there are
(
n+1

2

)
vector equations to be simultaneously solved. If they are

solvable for Cp, these equations must be essentially independent of r, s, a, and b.

Of course, the map δ exists and is well-defined, so solutions {Cp} must exist. In

particular, we may compute all Cp by selecting convenient values of r and s. To this

end, we now compute the ω−n ∧ ωn component of Equation 10.5.

First consider the ω−n ∧ ωn component of δQ(ω ∧ ω). Such a term can arise if

(r, s) = (0, n) or (r, s) = (n, 0). In the first case, an examination of Z ′ shows that

a = 0, and in the second case, an examination of Z ′ shows that a = p. Hence, the

ω−n ∧ ωn component of δQ(ω ∧ ω) simplifies to

2
∑
p

Cp

n−p∑
b=0

n∑
i=0

(
n

p

)2(
n− p
b

)2(
p

a

)(
p

i− b

)
n!(−1)bQ2i−nx

n−iyi (10.11)

The ω−n∧ωn term of Q(ω)∧ω is n! (Qny
n − (−1)nQ−nx

n). Therefore, {Cp(Q)} may

be computed by solving the vector equation:

(−1)n+1n!


Q−n

0
...
0
±Qn

 = A(Q)


Q−n
Q−n+2

...
Qn−2

Qn

 (10.12)

where Aj,i(Q) = 2
∑

pCp(Q)
∑n−p

b=0

(
n
p

)2(n−p
b

)2(p
a

)(
p
i−b

)
n!(−1)bδj,i. This is a set of

(necessarily consistent) affine equations for {Cp(Q)}. The equation A1,1(Q) = ±n!
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shows that the solution values of {Cp(Q)} are non-zero. So, Q may be chosen to

absorb a component of T of weight n.

Lemma 10.3. δPn is non-trivial, so it as maximum rank n. Furthermore, δPn 6= δQ.

Proof. Pn(ω) ∈ V2, and the image of δPn is defined by

0 = δPn(ω ∧ ω)− Pn(ω) ∧ ω. (10.13)

First, by the definition of the action by pairing,

Pn(ω) = 〈Pn, ω〉n−1

=
n−1∑
a=0

n∑
i,k=0

W Pn,2i−n ω
2k−n xn−k−i+1yk+i+1−n

(10.14)

where

W =

(
n− 1

a

)
n(−1)an!

(1 + a− i)!(i− a)!(n− k − a)!(k + a+ 1− n)!
. (10.15)

Notice that the summand is nontrivial only for i ∈ {a, a+ 1} and n− k ∈ {a, a+ 1}.

Hence,

Pn(ω) = 〈Pn, ω〉n−1

= n(n!)
n−1∑
a=0

(−1)a
(
n− 1

a

)(
Pn,2a−nω

n−2a−2x2+

(
Pn,2a−nω

n−2a + Pn,2a+2−nω
n−2a−2

)
xy + Pn,2a+2−nω

n−2ay2
)

(10.16)

Therefore we can compute the two-form

Pn(ω) ∧ ω =
〈
〈Pn, ω〉n−1 , ω

〉
1

=
∂Pn(ω)

∂x
∧ ∂ω
∂y
− ∂Pn(ω)

∂y
∧ ∂ω
∂x
. (10.17)

As in the previous lemma, we are concerned only with the ω−n ∧ ωn component of

Pn(ω) ∧ ω, which simplifies nicely to

n2(n!)
(
Pn,−nx

n + 2Pn,−n+2x
n−1y − (−1)n2Pn,n−2xy

n−1 − (−1)nPn,ny
n
)

(10.18)
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δPn may lie in any representation of weight n in the space of torsion operators,

Vn ⊗ (∧2Vn). For p ∈ {1, 3, 5, . . . , ν} there are coefficients Cp(Pn) such that

δPn(ω ∧ ω) =
∑
p

Cp(Pn)
〈
Pn, 〈ω, ω〉p

〉
n−p

. (10.19)

This is exactly the same formula that appears for δQ, so when considering the

ω−n ∧ ωn component, the matrix Ai,j(Pn) remains the same as in the proof of the

previous Lemma. The {Cp(Pn)} are determined by the equation

n2n!



Pn,−n
2Pn,−n+2

0
...
0

(−1)n2Pn,n−2

(−1)nPn,n


= A(Pn)



Pn,−n
Pn,−n+2

Pn,−n+4
...

Pn,n−4

Pn,n−2

Pn,n


(10.20)

The equation A1,1(Pn) = n!n2 shows that the solution values of {Cp(Pn)} are non-

zero and that they are not identical to the solution values of {Cp(Q)}. Hence, Pn

may be chosen to absorb a component of T of weight n that is distinct from the

component absorbed by Q.

Finally, we must verify that δPn−2 and δPn+2 are non-trivial (hence have max-

imum rank). These computations are analogous to those just demonstrated for Q

and Pn, and the result is as desired.

Just as four canonical connections appeared in Theorem 4.1, Theorem 10.1 does

not give a unique canonical connection, since we have not specified which representa-

tions of torsion of weights n−2, n (twice), and n+2 to absorb. However, gl(2)(1) = 0

and in specific examples it appears the equations are such that one can always absorb

torsion T 2n−2p
n where 2n− 2p is minimized.
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11

Integrability in Degree Five

In this chapter we consider 2- and 3-integrability ofGL(2)-structures of degree 5 using

the connection found in Chapter 10. The methods are identical to those employed in

Chapters 5 and 6, so many details are omitted. We discover that 2-integrable GL(2)-

structures of degree 5 admit a local classification given by an unknown singular

foliation of V9. Also, we discover that all 3-integrable GL(2)-structures of degree 5

are also 2-integrable.

In matrix form, the connection for a GL(2)-structure of degree 5 is


λ0 − 10φ0 10φ−2 0 0 0 0
−2φ2 λ0 − 6φ0 8φ−2 0 0 0

0 −4φ2 λ0 − 2φ0 6φ−2 0 0
0 0 −6φ2 λ0 + 2φ0 4φ−2 0
0 0 0 −8φ2 λ0 + 6φ0 2φ−2

0 0 0 0 −10φ2 λ0 + 10φ0

 (11.1)

Torsion for a degree 5 GL(2)-structure initially lies in V5⊗ (V8⊕V4⊕V0). After

fixing the connection defined in Chapter 10, the torsion operator decomposes as

T = (T 4
1 + T 4

9 ) + (T 8
3 + T 8

5 + T 8
7 + T 8

9 + T 8
11 + T 8

13). (11.2)
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11.1 Bi-secant Surfaces and 2-Integrability

We want to find the conditions on B that allows any bi-secant plane in TM to be

extended to a bi-secant surface Σ ⊂ M . The tangent planes TpΣ must intersect Cp

in two lines for all p ∈ Σ, so TpΣ is spanned by (a(p)x+b(p)y)5 and (A(p)x+B(p)y)5.

Under a GL(2) change of basis in TpM , we may assume the spanning vectors are x5

and y5.

The corresponding ideal is generated by {ω−3, ω−1, ω1, ω3} with independence

condition ω−5 ∧ ω5 6= 0. The tableau and torsion for this ideal are given by

d


ω−3

ω−1

ω1

ω3

 ≡

−2φ2 0

0 0
0 0
0 2φ−2

 ∧ (ω−5

ω5

)
+


τ−3

τ−1

τ 1

τ 3

ω−5 ∧ ω5, (11.3)

modulo ω−3, ω−1, ω1, ω3. Of course τ−3 and τ 3 may be absorbed, but τ−1 and τ 1

must vanish if bi-secant surfaces exist. Examining the formulas for these terms, the

vanishing of τ−1 and τ 1 forces 0 = T 4
1 = T 8

3 = T 8
5 = T 8

7 = T 8
11 = T 8

13 and T 4
9 = 2T 8

9 .

The remaining torsion component, T 8
9 , is free.

The tableau in Equation (11.3) is involutive; solutions exist and depend on two

functions of one variable. The first structure equation of a 2-integrable GL(2)-

structure of degree 5 is

dω = −〈ϕ, ω〉1 − 〈λ, ω〉0 +
〈
T 8

9 , 〈ω, ω〉1
〉

6
+ 2

〈
T 8

9 , 〈ω, ω〉3
〉

4
. (11.4)

To obtain additional necessary conditions, we must examine the Bianchi identity,

∇(θ)∧ω = ∇(T (ω ∧ω)). Let W9 denote the subspace of V9⊕V9 given as the graph

of the function v 7→ 2v. Then 2-integrability implies T : B →W9, so

∇T :B →W9 ⊗ V5,

Q :B → Sym2(W9) ∩ (V5 ⊗ (∧3V5)).
(11.5)

97



Of course, W9 is also an irreducible representation of SL(2), and it is isomorphic to

V9. The terms of ∇T and Q(T, T ) can be written in terms of ∇T 8
9 and Q(T 8

9 , T
8
9 ),

but the pairings are not the same as they would be if T = T 8
9 . Explicitly,

0 = d(dω)

= d
(
−〈ϕ, ω〉1 − λ ∧ ω +

〈
T 8

9 , 〈ω, ω〉1
〉

6
+ 2

〈
T 8

9 , 〈ω, ω〉3
〉

4

)
= −〈dϕ, ω〉1 − 〈ϕ, 〈ϕ, ω〉1〉1 − dλ ∧ ω − λ ∧ 〈ϕ, ω〉1 − 〈ϕ, λ ∧ ω〉

+
〈
ϕ,
〈
T 8

9 , 〈ω, ω〉1
〉

6

〉
1

+ 2
〈
ϕ,
〈
T 8

9 , 〈ω, ω〉3
〉

4

〉
1

+ λ ∧
〈
T 8

9 , 〈ω, ω〉1
〉

6
+ 2λ ∧

〈
T 8

9 , 〈ω, ω〉3
〉

4

+
〈
dT 8

9 , 〈ω, ω〉1
〉

6
+ 2

〈
dT 8

9 , 〈ω, ω〉3
〉

4

− 2
〈
T 8

9 , 〈〈ϕ, ω〉1 , ω〉1
〉

6
− 2

〈
T 8

9 , 〈λ ∧ ω, ω〉1
〉

6

− 4
〈
T 8

9 , 〈〈ϕ, ω〉1 , ω〉3
〉

4
− 4

〈
T 8

9 , 〈λ ∧ ω, ω〉3
〉

4

+ 2
〈
T 8

9 ,
〈〈
T 8

9 , 〈ω, ω〉1
〉

6
, ω
〉

1

〉
6

+ 4
〈
T 8

9 ,
〈〈
T 8

9 , 〈ω, ω〉3
〉

4
, ω
〉

1

〉
6

+ 4
〈
T 8

9 ,
〈〈
T 8

9 , 〈ω, ω〉1
〉

6
, ω
〉

3

〉
4

+ 8
〈
T 8

9 ,
〈〈
T 8

9 , 〈ω, ω〉3
〉

4
, ω
〉

3

〉
4
.

(11.6)

The last four terms provide Q(T, T )(ω∧ω∧ω), and the six terms before those provide

(∇T )(ω∧ω). By expanding this equation and applying Schur’s lemma, the following

relations are discovered:

S8
14 =

105

286

〈
T 8

9 , T
8
9

〉
2
, S8

12 = 0 (11.7)

R8
10 =

70

9

〈
T 8

9 , T
8
9

〉
4
, S8

10 =
10

117

〈
T 8

9 , T
8
9

〉
4
, (11.8)

R8
8 = 0, r8

8 = 0, S8
8 = 0, (11.9)

R8
6 = −56

3

〈
T 8

9 , T
8
9

〉
6
, R4

6 =
133

2

〈
T 8

9 , T
8
9

〉
6
, S8

6 =
7

33

〈
T 8

9 , T
8
9

〉
6
, (11.10)

R4
4 = 0, r4

4 = 0, S8
4 = 0, (11.11)
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R4
2 = −784

〈
T 8

9 , T
8
9

〉
8
, R0

2 = 16660
〈
T 8

9 , T
8
9

〉
8
, (11.12)

r0
0 = 0. (11.13)

In particular, all terms in ∇θ and ∇T depend only on the value of T . Hence, we have

an existence and uniqueness theorem for 2-integrable GL(2)-structures of degree 5.

Theorem 11.1. A GL(2)-structure B over M6 is 2-integrable if only if there is an

SL(2)-equivariant function T : B → V9 such that the structure equations of B are of

the form

dω = −〈ϕ, ω〉1 − 〈λ, ω〉0 + 〈T, 〈ω, ω〉1〉6 + 2 〈T, 〈ω, ω〉3〉4

dλ = 0

dϕ = −1

2
〈ϕ, ϕ〉1 +

70

9

〈〈
T 8

9 , T
8
9

〉
4
, 〈ω, ω〉1

〉
8
− 56

3

〈〈
T 8

9 , T
8
9

〉
6
, 〈ω, ω〉1

〉
6

+
133

2

〈〈
T 8

9 , T
8
9

〉
6
, 〈ω, ω〉3

〉
4
− 784

〈〈
T 8

9 , T
8
9

〉
8
, 〈ω, ω〉3

〉
2

+ 16660
〈〈
T 8

9 , T
8
9

〉
8
, 〈ω, ω〉5

〉
0

dT = K(T )

ωλ
ϕ



(11.14)

for a 10× 10 matrix K(T ) whose entries are linear and quadratic polynomials in the

coefficients of T . Moreover, if B is analytic, bi-secant surfaces locally depend upon

two functions of one variable.

Just as in Chapter 6, Cartan’s structure theorem applies, so the K-leaves of V9

determine leaf-equivalence classes of 2-integral GL(2)-structures of degree 5. Unfor-

tunately, a simple computation (for Maple) shows that, though the discriminant

of T and the determinant of K(T ) are both polynomials of degree 16, they have no

common divisors, and there appears to be no obvious relation between the multi-

plicity of the roots of T and the rank of K(T ). At this point, there is little hope of

explicitly identifying the leaf-equivalence classes by analyzing the K-leaves.

99



11.2 Tri-secant 3-Folds and 3-Integrability

Now let us find the conditions for extension of any tri-secant subspace of TM to a

tri-secant submanifold N of M . Under a GL(2) change of basis, we may assume the

spanning vectors are x5 and y5 and (x+y)5 = x5 +5x4y+10x3y2 +10x2y3 +5xy4 +y5.

Hence, any vector in TN ⊂ TM looks like (a+ b) x5 + b 5x4y+ b 10x3y2 + b 10x2y3 +

b 5xy4 + (b + c) y5. Lifting this problem to B, these vectors are in the kernel of

three 1-forms, κ−3 = ω−3 − ω1, κ−1 = ω−1 − ω1, and κ3 = ω3 − ω1. Hence, we

study the EDS differentially generated by these κ’s with the independence condition

ω−5 ∧ ω1 ∧ ω5 6= 0. The torsion and tableau for this system are given by:

d

κ−3

κ−1

κ3

 ≡
2ϕ2 λ0 + 2ϕ0 0

0 λ0 + 6ϕ−2 + 2ϕ0 0
0 λ0 + 2ϕ0 + 8ϕ2 −2ϕ−2

 ∧
ω5

ω1

ω5

+ τ(ω ∧ ω), (11.15)

modulo κ−3, κ−1, κ3. Some components of τ are unabsorbable, and these force the

conditions 0 = T 4
1 = T 8

3 = T 8
5 = T 8

7 = T 8
11 = T 8

13 and T 4
9 = 2T 8

9 . The remaining

torsion component, T 8
9 , is free. Application of Cartan’s test shows that the tableau

is involutive, with solutions depending on three functions of one variable.

Theorem 11.2. A GL(2)-structure of degree 5 is 3-integrable if and only if it is 2-

integrable. If the structure is analytic, then tri-secant 3-folds exist and locally depend

on three functions of one variable.

Compared to the case of degree 4 in Chapter 6, it is striking that closed structure

equations are obtained using only the condition of 2-integrability, and that the neces-

sary and sufficient conditions for 2-integrability and 3-integrability are identical. No

prolongation is required, unlike the case in Chapter 6. In Chapter 12, this behavior

appears to hold for all higher degree GL(2)-structures as well.
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12

Integrability for Large Degrees

This chapter is a summary of results regarding 2- and 3-integrability of GL(2)-

structures of degree n ≥ 6. The primary conjecture is that 2-integrable structures

are characterized locally by a single irreducible component of torsion of degree n+4,

and all 3-integrable structures are also 2-integrable. In other words, the situation in

degree 5 is expected to extend to all degrees n ≥ 6, too.

12.1 Bi-secant Surfaces and 2-Integrability

The vectors spanning the bi-secant plane can be written as xn and yn, so the ex-

istence of a bi-secant surface through every bi-secant tangent plane is dictated by

the integrability of the ideal I that is differentially generated by ω−n+2, ω−n+4, . . . ,

ωn−4, and ωn−2 and with the independence condition ω−n ∧ ωn 6= 0. The tableau

and torsion are given by

d


ω−n+2

ω−n+4

...
ωn−4

ωn−2

 ≡

π1 0
0 0
...

...
0 0
0 π2

 ∧
(
ω−n

ωn

)
+


τ−n+2

τ−n+4

...
τn−4

τn−2

ω−n ∧ ωn, (12.1)
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modulo ω−n+2, ω−n+4, . . . , ωn−4, ωn−2. Cursory examination of the tableau indicates

a simple theorem.

Theorem 12.1 (Existence of solutions). If an analytic GL(2)-structure of degree

n ≥ 3 is 2-integrable, then bi-secant surfaces exist and depend on two functions of

one variable.

The more difficult problem is to determine the conditions on torsion and curvature

that allow 2-integrability. In order to carry out the integrability results for n =

4 and n = 5, Maple code was produced that is generic enough to study 2- or

3-integrability for any particular n. Using the canonical connection described in

Chapter 10, it generates the ideal representing k-integrability and applies Jeanne

Clelland’s implementation of the Cartan–Kähler theorem to find the unabsorbable

torsion, τ−n+4, . . . , τn−4, of the tableau. It then determines the conditions on T by

finding the irreducible components of T that appear in τ . Finally, the code examines

the Bianchi identity to determine the relations on the irreducible components of

curvature. This is exactly the algorithm that produces Theorems 5.2, 6.4, 11.1, and

11.2.

Theorem 12.2. Let 3 ≤ n ≤ 20. If a GL(2)-structure of degree n is 2-integrable,

then its torsion takes values only in irreducible representations of degree n+4. More-

over, the torsion is entirely determined by the irreducible component that appears in

T (ω ∧ ω) as
〈
T 2n−2
n+4 , 〈ω, ω〉1

〉
n+1

. In particular, there are constants A3, A5, . . . , Aν

such that T (ω ∧ ω) equals

〈
T 2n−2
n+4 , 〈ω, ω〉1

〉
n+1

+A3

〈
T 2n−2
n+4 , 〈ω, ω〉3

〉
n−1

+· · ·+Aν
〈
T 2n−2
n+4 , 〈ω, ω〉ν

〉
n−ν+2

. (12.2)

Theorem 12.2 is slightly more complicated for n ≥ 5 than it is for n = 3 or

n = 4. In the two smaller degrees, there is only one irreducible component of torsion
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that takes values in a representation of degree n+4; however, for n ≥ 5, there are

many. As seen in Chapter 11, multiple components of torsion of degree n+4 are non-

vanishing, but the image of T lies in an oblique subspace Wn+4 ⊂ Vn+4⊕ · · · ⊕Vn+4.

This subspace Wn+4 projects non-trivially onto each of the copies of Vn+4, but by

analogy to the n = 3 and n = 4 case, we choose to describe the term T 2n−2
n+4 as the

free coordinate.

The upper limit of n = 20 is simply where Maple extinguishes the memory of a

desktop computer (2 GiB) while computing the torsion of the tableau. These results

are expected to hold for larger n as well.

Under the condition of Theorem 12.2, the Bianchi identity can be examined; using

Schur’s lemma, relations between R, r, ∇T , and Q can be determined. If 6 ≤ n ≤ 9,

the result is analogous to Theorem 11.1: all components of R, r, and ∇T depend

only on Q(T, T ).

Theorem 12.3 (Sufficient Conditions and Classification). Let 5 ≤ n ≤ 9. If a

GL(2)-structure of degree n is 2-integrable, then its structure equations satisfy Theo-

rem 2.12 such that the local structure is determined by the value of T 2n−2
n+4 at a point.

In particular, the leaf-equivalence classification of pointed, connected 2-integrable

structures is described by leaves of a singular foliation of Vn+4.

The upper limit of n = 9 is also arbitrary, given by computational limitations in

the decomposition of Q.

12.2 Tri-secant Surfaces and 3-Integrability

Now let us find the conditions for extension of any tri-secant subspace of TM to

a tri-secant submanifold N of M . Under a GL(2) change of basis, we may assume

the spanning vectors are xn and yn and (x + y)n =
∑n

k=0

(
n
k

)
xnyn−k. Hence, any

vector in TN ⊂ TM looks like (a+ b) xn + b nxn−1y + · · ·+ b nxyn−1 + (b+ c) yn.
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Lifting this problem to B, these vectors are in the kernel of n−2 1-forms, κ−n+4 =

ω−n+4 − ω−n+2, κ−n+6 = ω−n+6 − ω−n+2, . . . , and κn−2 = ωn−2 − ω−n+2. Hence, we

study the EDS differentially generated by these κ’s with the independence condition

ω−n∧ω−n+2∧ωn 6= 0. The tableau for this system is easier to understand if we use a

different basis for the span of ω−n, ω−n+2, and ωn; let η1 = ω−n, η2 = 1
2
(ω−n+2−ωn),

and η3 = 1
2
(ω−n+2 + ωn).

The torsion and tableau for this system are given by

d



κ−n+4

κ−n+6

...
κn−6

κn−4

κn−2


≡



π1 0π1 + 1π2 0π1 + 1π2

π1 1π1 + 2π2 1π1 + 2π2
...

...
...

π1 (n− 5)π1 + (n− 4)π2 (n− 5)π1 + (n− 4)π2

π1 (n− 4)π1 + (n− 3)π2 (n− 4)π1 + (n− 3)π2

π1 π3 (n− 3)π1 + (n− 2)π2


∧

η1

η2

η3

+τ(η, η).

(12.3)

modulo κ−n+4, . . . , κn−4, and κn−2. Again, examination of the tableau indicates that

it is involutive. This is in contrast to the case n = 4, where prolongation is required.

Theorem 12.4 (Existence of solutions). If an analytic GL(2)-structure of degree

n ≥ 5 is 3-integrable, then tri-secant surfaces exist and depend on three functions of

one variable.

Some components of τ are unabsorbable, though they are more difficult to see

than in the 2-integrable case. So, 3-integrability forces conditions on the torsion T

of the 3-integrable GL(2)-structure. In all cases that the Maple code can analyze,

the conditions for 3-integrability are identical to those of 2-integrability, just as seen

in Chapter 11 for n = 5. On account of Theorem 12.3, this provides necessary and

sufficient conditions as well as a local equivalence theorem and a leaf-classification.

Theorem 12.5 (Conditions and Classification). Let 5 ≤ n ≤ 20. A GL(2)-structure

of degree n is 2-integrable if and only if it is 3-integrable.
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12.3 Conjectured Results

Theorems 12.2, 12.3, and 12.5 are expected to hold for n ≥ 21 as well, but Maple’s

data-types are not sufficiently flexible to allow direct computation for generic n.

Conjecture 12.6 (Structure Classification). A GL(2)-structure B of degree n ≥

5 is 2-integrable if and only if it is 3-integrable. In this case, the local structure

in a connected neighborhood of b ∈ B is determined by T 2n−2
n+4 (b). Moreover, the

leaf-equivalence class of pointed, connected structures are determined by a singular

foliation of Vn+4.

Included here are some partial results the point towards a direct proof of this

conjecture. The technique follows the outline suggested by the Maple output for

6 ≤ n ≤ 20. First, we try to determine which components of torsion must vanish

because τ 4−n, . . . , τn−4 are unabsorbable for a 2-integrable structure.

Conjecture 12.7 (n+4 Conjecture). The vanishing of τ 4−n, . . . , τn−4 forces the van-

ishing of all irreducible components of T (ω ∧ ω) except those of weight n+4. Of the

components of weight n+4, exactly one is free.

A proof of Conjecture 12.7 must involve a computation to determine which repre-

sentations of T appear in the equation 0 = τ−n+2i(ω−4∧ω4) for i = 2, . . . , n−2. Note

that τ−n+2i(ω−4∧ω4) is the xn−iyi component of T (ω∧ω) modulo {ω−n+2, . . . , ωn−2}.

Write T 2n−2p
t =

∑t
s=0 T

2n−2p
t,2s−t

(
t
s

)
xt−sys and 〈ω, ω〉p ≡

2
p!

(
n!

(n−p)!

)2

xn−pyn−pω−n ∧ ωn.

Set q(p) = (t+ n− 2p)/2, and we may compute

T (ω ∧ ω) ≡
∑
p

〈
T 2n−2p
t ,

2

p!

(
n!

(n− p)!

)2

xn−pyn−p

〉
q

, mod ω2−n, . . . , ωn−2,

=
∑
p

q∑
a=0

t∑
s=0

(
q

a

)
(−1)a2(n!)2t! T 2n−2p

t,2s−t x
t−s−q+n−pys−a+n−p−q ω−n ∧ ωn

p!q!(t− s− q + a)!(s− a)!(n− p− a)!(n− p− q + a)!
.

(12.4)

105



This only must vanish for 2 ≤ s − a + n − p − q ≤ n − 2. To better identify the

conditions on T 2n−2p
t , write

A(t, p, s, a) =

(
q

a

)
(−1)a2(n!)2t!

p!q!(t− s− q + a)!(s− a)!(n− p− a)!(n− p− q + a)!
, and

Zi
p(t) =

∑
p

{A(t, p, s, a) : i = s− a+ n− p− q} .

(12.5)

Recall that ν is the largest odd number less than n. We now have a matrix Z(t) that

has rows indexed by p ∈ {1, 3, . . . , ν} and columns indexed by i ∈ {2, 3, . . . , n− 2},

and the condition for existence of bi-secant surfaces is

0 = τn−2i =
∑
p

Zi
p(t)T

2n−2p
t , for i = 2, . . . , n− 2. (12.6)

In particular, Conjecture 12.7 may be rephrased in terms of the matrix Z(t).

Conjecture 12.8 (n+4 Conjecture, Matrix Form). The matrix Z(t) has trivial ker-

nel for t 6= n+ 4, and the kernel of Z(n+ 4) is one-dimensional such that the p = 1

coordinate is free.

The matrix Z(j) admits many symmetries, but so far no success has been achieved

in determining its exact kernel for arbitrary t.
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13

Conclusion and Future Work

In the context of GL(2) geometry, this dissertation has achieved some significant ad-

ditions to the known results. Chapter 10 provides a handful of canonical connections

on GL(2)-structures of any degree. Using one of these connections, the following

results are now known for k-integrable GL(2)-structures over Mn+1, at least in the

real-analytic category.

• n = 3, k = 2: Bi-secant surfaces locally depend on two functions of one variable.

Torsion takes values in V7, and there is curvature in V4 and V2 [Bry91].

• n = 4, k = 2: Bi-secant surfaces locally depend on two functions of one variable.

Torsion takes values in V8, and there is curvature in V0.

• n = 4, k = 3: Tri-secant 3-folds locally depend on three functions of one

variable. If the structure is also 2-integrable, then torsion takes values in V8,

and there is no free curvature. In this case, a local classification of the structures

is given by root-types in V8. All classes arise from hydrodynamic PDEs.

• 5 ≤ n, k = 2: Bi-secant surfaces locally depend on two functions of one
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variable. Partial Conjecture: Torsion takes values in Vn+4, and there is no free

curvature. A local classification exists but remains unidentified.

• 5 ≤ n, k = 3 : Tri-secant 3-folds locally depend on three functions of one

variable. Partial Conjecture: 3-integrability is equivalent to 2-integrability.

From the perspective of PDE theory, the case n = 4 is particularly interesting.

In [FHK07] it is shown that any second-order PDE, F (uij) = 0, integrable via 3-

parameter hydrodynamic reductions gives rise to a natural 2,3-integrable GL(2)-

structure of degree 4. This dissertation classifies all 2,3-integrable GL(2)-structures

of degree 4 and verifies that all components of the classification are obtainable from

second-order PDE. To make the greatest use of this classification, two further results

are desired.

1. Given a PDE of this type, find the corresponding M ⊂ Λo and compute the

torsion of the corresponding GL(2)-structure. A good starting point is the

quasilinear case, 0 = F (uij) =
∑

ij fij(ξ)uij, which was classified quite recently

in [BFT08]. The quasilinear classification must somehow fit into the broader

classification presented in this dissertation. Additionally, structure equations

for the point symmetries of specifics PDEs can be computed using techniques

like those shown in [LR98], [LR00], and [COP05], and these techniques may be

applicable in a more general way to analyze this whole family of PDEs.

2. Given v ∈ V8, produce a PDE of this type whose associated GL(2)-structure

has torsion v. This can probably be accomplished by manipulating the inte-

gration computations from Section 8.3 to embed the local coordinates for M

into the standard local coordinates on Λo such that the GL(2) fiber immerses

into Sp(3,R) as in Chapter 9. New integrable PDEs will probably arise this

way.
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These two results should be pursued immediately to finally establish a clear coordinate-

independent geometric meaning behind hydrodynamic reductions.

More generally, F (uij) = 0 is not invariant under arbitrary coordinate changes,

but integrability phenomena should remain independent of coordinate choice. The

relationship between F = 0 and the GL(2)-structure over M ⊂ Λo appears to require

that F only depends on second derivatives. An important open problem is the

extension of the theory of k-integrable GL(2)-structures to PDEs that include lower

derivatives, 0 = F (u, ui, uij).

Regarding the high degree cases studied in Chapter 11 and Chapter 12, the

leaf-classification is elusive, but it certainly exists. Presumably these structures

represent something, even if it is not a hydrodynamic PDE. Thus there remain two

results to pursue: tie the structures to a physical system or identify the foliation that

classifies the structures. Either one would help the other and undoubtedly lead to

new discoveries. Note that a correspondence to reduced jet-graphs could be sought

for PDEs F (uij) = 0 with 1 ≤ i, j ≤ N . This could conceivably lead to GL(2)-

structures of degree n = N(N + 1)/2 − 2. If 2,3-integrability holds, then a local

classification of the structures is given by a singular foliation of Vn+4, and one would

seek local embeddings of these structures into Sp(N).

Even more broadly, one hopes to establish a relationship between the GL(2)

geometry of PDEs and the GL(2) geometry of ODEs presented in [Nur07], [BN07],

and elsewhere. At a conference at the Mathematical Sciences Research Institute

in May 2008, Nurowski indicated that the interesting GL(2) geometry for ODEs

appears to be limited to dimension 5 in much the same way that 3-integrable GL(2)-

structures over Mn+1 are most interesting for n = 4. The geometry is tantalizingly

similar even though the irreducible torsion takes values in different representations.

Finally, it would be nice to put the 2-integrability structure classification (Con-

jecture 12.6) to rest once and for all. Simple-minded attempts of exploiting the

109



symmetries in the matrix Z(t) have so far failed, as have initial attempts at using

the methods of hyper-geometric series as summarized in [PWZ96]. However, the

examples studied by hand make it clear that this should require much determination

but little cleverness for any given degree n.
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Appendix A

The Matrix J

For reference, here is the matrix J(T ), listed by column.

The ω−4 component:

J1,1 = 2580480T−8T4 − 2580480T−6T2

J2,1 = −2257920T−4T2 + 645120T−8T6 + 1612800T−6T4

J3,1 = 645120T−4T4 − 1935360T−2T2 + 1198080T−6T6 + 92160T−8T8

J4,1 = −1612800T0T2 − 322560T−2T4 + 322560T−6T8 + 1612800T−4T6

J5,1 = 774144T−4T8 + 1806336T−2T6 − 1290240T 2
2 − 1290240T0T4

J6,1 = −3225600T2T4 + 1612800T0T6 + 1612800T−2T8

J7,1 = 3225600T0T8 − 3225600T 2
4

J8,1 = 6451200T2T8 − 6451200T6T4

J9,1 = −12902400T 2
6 + 12902400T8T4
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The ω−2 component:

J1,2 = −12902400T−8T2 + 12902400T−6T0

J2,2 = −3548160T−8T4 − 7741440T−6T2 + 11289600T−4T0

J3,2 = −2580480T−4T2 + 9676800T−2T0 − 645120T−8T6 − 6451200T−6T4

J4,2 = −8386560T−4T4 + 2580480T−2T2 + 8064000T 2
0 − 2211840T−6T6 − 46080T−8T8

J5,2 = 14192640T0T2 − 8773632T−2T4 − 258048T−6T8 − 5160960T−4T6

J6,2 = −967680T−4T8 − 10321920T−2T6 + 12902400T 2
2 − 1612800T0T4

J7,2 = 19353600T2T4 − 16128000T0T6 − 3225600T−2T8

J8,2 = 22579200T 2
4 − 9676800T0T8 − 12902400T2T6

J9,2 = −25804800T2T8 + 25804800T6T4

The ω0 component:

J1,3 = −25804800T−6T−2 + 25804800T−8T0

J2,3 = −22579200T−4T−2 + 8064000T−8T2 + 14515200T−6T0

J3,3 = 1935360T−8T4 − 19353600T 2
−2 + 14192640T−6T2 + 3225600T−4T0

J4,3 = 17418240T−4T2 − 24192000T−2T0 + 322560T−8T6 + 6451200T−6T4

J5,3 = 14450688T−4T4 + 3096576T−2T2 − 19353600T 2
0 + 1769472T−6T6 + 36864T−8T8

J6,3 = −24192000T0T2 + 17418240T−2T4 + 322560T−6T8 + 6451200T−4T6

J7,3 = 1935360T−4T8 + 14192640T−2T6 − 19353600T 2
2 + 3225600T0T4

J8,3 = −22579200T2T4 + 14515200T0T6 + 8064000T−2T8

J9,3 = 25804800T0T8 − 25804800T2T6
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The ω−2 component:

J1,4 = 25804800T−4T−6 − 25804800T−2T−8

J2,4 = −12902400T−6T−2 − 9676800T−8T0 + 22579200T 2
−4

J3,4 = 19353600T−4T−2 − 3225600T−8T2 − 16128000T−6T0

J4,4 = −967680T−8T4 + 12902400T 2
−2 − 10321920T−6T2 − 1612800T−4T0

J5,4 = −8773632T−4T2 + 14192640T−2T0 − 258048T−8T6 − 5160960T−6T4

J6,4 = −8386560T−4T4 + 2580480T−2T2 + 8064000T 2
0 − 2211840T−6T6 − 46080T−8T8

J7,4 = 9676800T0T2 − 2580480T−2T4 − 645120T−6T8 − 6451200T−4T6

J8,4 = 11289600T0T4 − 3548160T−4T8 − 7741440T−2T6

J9,4 = 12902400T0T6 − 12902400T−2T8

The ω4 component:

J1,5 = 12902400T−4T−8 − 12902400T 2
−6

J2,5 = −6451200T−4T−6 + 6451200T−2T−8

J3,5 = −3225600T 2
−4 + 3225600T−8T0

J4,5 = −3225600T−4T−2 + 1612800T−8T2 + 1612800T−6T0

J5,5 = 774144T−8T4 − 1290240T 2
−2 + 1806336T−6T2 − 1290240T−4T0

J6,5 = −322560T−4T2 − 1612800T−2T0 + 322560T−8T6 + 1612800T−6T4

J7,5 = 645120T−4T4 − 1935360T−2T2 + 1198080T−6T6 + 92160T−8T8

J8,5 = 645120T−6T8 − 2257920T−2T4 + 1612800T−4T6

J9,5 = −2580480T−2T6 + 2580480T−4T8
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The λ component:

J1,6 = T−8

J2,6 = T−6

J3,6 = T−4

J4,6 = T−2

J5,6 = T0

J6,6 = T2

J7,6 = T4

J8,6 = T6

J9,6 = T8

The ϕ−2, ϕ0, and ϕ2 components:

J1,7 = −16T−6, J1,8 = 16T−8, J1,9 = 0

J2,7 = −14T−4, J2,8 = 12T−6, J2,9 = 2T−8

J3,7 = −12T−2, J3,8 = 8T−4, J3,9 = 4T−6

J4,7 = −10T0, J4,8 = 4T−2, J4,9 = 6T−4

J5,7 = −8T2, J5,8 = 0, J5,9 = 8T−2

J6,7 = −6T4, J6,8 = −4T2, J6,9 = 10T0

J7,7 = −4T6, J7,8 = −8T4, J7,9 = 12T2

J8,7 = −2T8, J8,8 = −12T6, J8,9 = 14T4

J9,7 = 0, J9,8 = −16T8, J9,9 = 16T6
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