Submanifolds, moving frames, and integrable systems

Chuu-Lian Terng

Department of Mathematics University of California, Irvine

June 13, 2011 Workshop on Moving Frames in Geometry CRM Montreal

Chuu-Lian Terng Submanifolds, moving frames, and integrable systems

Outline of lecture:

- Isothermic surfaces in \mathbb{R}^3 , classical theory
- U/K-system
- Isothermic hypersurfaces in \mathbb{R}^{n+1}

・ロ・ ・ 四・ ・ 回・ ・ 回・

Isothermic surfaces in \mathbb{R}^3

An immersion $f(x_1, x_2) \in \mathbb{R}^3$ is called isothermic if (x_1, x_2) is a conformal line of curvature coordinate system, i.e.,

$$I = e^{2u}(dx_1^2 + dx_2^2), \quad II = e^u(r_1 dx_1^2 + r_2 dx_2^2)$$

for some function u, r_1, r_2 .

The Gauss-Codazzi equation (GCE) is

$$\begin{cases} u_{x_1x_1} + u_{x_2x_2} + r_1r_2 = 0, \\ (r_1)_{x_2} = u_{x_2}r_2, \\ (r_2)_{x_1} = u_{x_1}r_1. \end{cases}$$

・ロ・・ (日・・ (日・・ 日・)

- Constant mean curvature surfaces in ℝ³ away from umbilic points admit isothermic coordinates
- a local conformal parametrization of *S*², i.e., composition of analytic functions with the inverse of the Sterographic projection.

・ロ・・ 日・ ・ 日・ ・ 日・

Note that if (u, r_1, r_2) is a solution of the GCE, then so is $(-u, r_1, -r_2)$. What are the relation between the corresponding isothermic surfaces?

Thm. (Christoffel) M_1, M_2 surfaces in $\mathbb{R}^3, \phi : M_1 \to M_2$ a conformal, orientation reversing diffeomorphism, T_pM_1 is parallel to $T_{\phi(p)}M_2$ for all $p \in M_1$. Then both M_1 and M_2 are isothermic such that with (u, r_1, r_2) and $(-u, r_1, -r_2)$ the corresponding solutions of the GCE resp. We call the pair of isothermic immersions (f_1, f_2) a Christoffel pair.

 M, \tilde{M} hypersurfaces in \mathbb{R}^{n+1} , a diffeo $\phi : M \to \tilde{M}$ is a Ribaucour transform if

- the normal line of *M* at *p* and the normal line of *M* at φ(*p*) meets at equi-distance *r*(*p*) for each *p* ∈ *M*, i.e., *M*, *M* are envelopes of a *n* parameter hypersphere congruence,
- ϕ maps principal directions of *M* to those of \tilde{M} .

Thm. (Darboux) Given an isothermic surface M in \mathbb{R}^3 , there is a one parameter family of Ribaucour transforms from M obtained by solving a compatible system of first order PDE system of five functions.

Lax pair for the GCE of isothermic surfaces

Cieslinski-Goldstein-Sym (1995): The GCE for isothermic surfaces in \mathbb{R}^3 has a Lax pair, i.e., it is given by the flatness of the o(4, 1)-valued connections on \mathbb{R}^2 :

$$\theta_{\lambda} = \begin{pmatrix} \tau_1 & \delta \lambda \\ \delta^{\sharp} \lambda & \tau_2 \end{pmatrix}, \quad \text{where}$$

$$\tau_{1} = (W_{AB}) = \begin{pmatrix} 0 & u_{x_{2}} dx_{1} - u_{x_{1}} dx_{2} & r_{1} dx_{1} \\ & 0 & r_{2} dx_{2} \\ & & 0 \end{pmatrix},$$
$$\tau_{2} = \begin{pmatrix} 0 & du \\ du & 0 \end{pmatrix}, \qquad \delta = \begin{pmatrix} 0 & dx_{1} \\ dx_{2} & 0 \\ 0 & 0 \end{pmatrix}, \qquad \delta^{\sharp} = -J\delta^{t}.$$

Remark. This is the $\frac{O(4,1)}{O(3) \times O(1,1)}$ -system, the first order system associated to the rank 2 symmetric space $\frac{O(4,1)}{O(3) \times O(1,1)}$.

(日)

Let U/K be a (pseudo-) Riemannian symmetric space defined by involution σ ,

$$\mathcal{U} = \mathcal{K} + \mathcal{P}$$

a Cartan decomposition, (i.e., the eigenspace decomposition of σ_* with eigenvalues 1, -1) \mathcal{A} a maximal abelian subalgebra in \mathcal{P} , and \mathcal{A}^{\perp} the orthogonal complement of \mathcal{A} in \mathcal{P} w.r.t. the Killing form. The dim of \mathcal{A} is the rank of $\frac{U}{K}$.

$\frac{U}{K}$ -system

The $\frac{U}{K}$ -system (T-) is the following system for $v : \mathbb{R}^n \to \mathcal{A}^{\perp}$: $[a_i, v_{x_j}] - [a_j, v_{x_i}] + [[a_i, v], [a_j, v]] = 0, \quad 1 \le i \ne j \ne n.$ Or equivalently,

 $\theta_{\lambda} = \sum_{i=1}^{n} (\mathbf{a}_{i}\lambda + [\mathbf{a}_{i}, \mathbf{v}]) \,\mathrm{dx_{i}}$

is a flat $\mathcal{U}_{\mathbb{C}}$ -valued connection 1-form on \mathbb{R}^n for all complex parameter λ .

Given a solution of the $\frac{U}{K}$ -system, there is a unique $E(x, \lambda)$ satisfying

$$E^{-1} dE = \theta_{\lambda}, \quad E(0, \lambda) = I.$$

Such *E* is called the frame of the solution *v*.

Curved flats and Flat Abelian submanifolds

- Ferus-Pedit: An *n*-dim submanifold *M* in a rank *n* symmetric space $\frac{U}{K}$ is a curved flat if *M* is tangent to a totally geodesic *n* dim flat n-submanifold of $\frac{U}{K}$ at *p* for each $p \in M$.
- T-: M^n in \mathcal{P} is a flat, abelian submanifold if the induced metric is flat, T_pM is a maximal abelian subalgebra in \mathcal{P} for each $p \in M$, and the normal bundle of M is flat.

The $\frac{U}{K}$ -system is equivalent to both the GCE for curved flats in $\frac{U}{K}$ and the GCE for flat abelian submanifolds in \mathcal{P} .

Thm. if $E(x, \lambda)$ is the frame for a solution *v* of the $\frac{U}{K}$ -system, then

•
$$\eta = \frac{\partial E}{\partial \lambda} E^{-1} \Big|_{\lambda=0}$$
 is a flat, abelian submanifold in \mathcal{P}
• $f(x) = E(x, 1)E(x, -1)^{-1}$ is a curved flat in $\frac{U}{K}$,
• if $\frac{U}{K} = \frac{O(4,1)}{O(3) \times O(1,1)}$, then η in (1) is of the form
 $\eta = \begin{pmatrix} 0 & Y \\ Y^{\sharp} & 0 \end{pmatrix}$, where Y is 3 × 2 valued and
 $Y = (f_1, f_2) \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ is a Christoffel pair.

・ロ・・ 日・ ・ 日・ ・ 日・

Dressing action of the Rational loop group

Let \hat{G} denote the group of rational maps $g: S^2 \to U_{\mathbb{C}}$ satisfying the $\frac{U}{K}$ -reality condition

$$g(\overline{\lambda})) = g(\lambda), \quad g(-\lambda) = \sigma(g(\lambda))$$

and $g(\infty) = I$.

Uhlenbeck- T: Let $E(x, \lambda)$ be the frame of a solution v of the $\frac{U}{K}$ -system, and $g \in \hat{G}$. Then there is an open subset \mathcal{O} of 0 in \mathbb{R}^n such that for each $x \in \mathcal{O}$ we can factor

$$g^{-1}(\lambda)E(x,\lambda) = \tilde{E}(x,\lambda)\tilde{g}(x,\lambda)$$

such that $\tilde{g}(x, \cdot) \in \hat{G}$ and $E(x, \lambda)$ is holomorphic for $\lambda \in \mathbb{C}$.

・ロット 小田 マス 日マ

Moreover,

- \tilde{E} is again a solution \tilde{v} of the $\frac{U}{K}$ -system,
- \tilde{E} , so is \tilde{v} , can be obtained explicitly and algebraically via residue calculus.
- (g, v) → ṽ defines an action of Ĝ on the space of local solutions of the ^U/_K-system,
- \tilde{g} can also be obtained by solving a system of non-linear first order PDE (Bäcklund, Darboux transf),
- the Bianchi permutability formula follows from the relation in Ĝ,
- if we apply this to O(3)×O(1,1) - system for g ∈ Ĝ with two simple poles, then we get the classical Darboux Theorem for Ribaucour transf for isothermic surfaces.

Joint work with Neil Donaldson:

• An orthogonal coordinate system *x* of (*M*, ds²) is called C-coordinate system if $ds^2 = \sum_{i=1}^{n} g_{ii} dx_i^2$ satisfying

$$g_{11} + \ldots + g_{n-1,n-1} - g_{nn} = 0.$$

- An immersion $f(x_1, ..., x_n) \in \mathbb{R}^{n+1}$ is isothermic if x is both a C-coordinate and a line of curvature coordinate system.
- A diffeo φ : M → M
 M
 M

 Combescure transf if T_pM is parallel to T_{φ(p)}M
 M

 for each p ∈ M.

Let \mathcal{O} be an open subset in \mathbb{R}^n , and $\mathcal{M}_{n+1,n}$ the space of $(n+1) \times n$ matrices. A map $(f_1, \ldots, f_n) : \mathcal{O} \to \mathcal{M}_{n+1,n}$ is called a Christoffel n-tuple if

- $f_1(x)$ is parametrized by C-coordinates,
- *f_i(x)* → *f_{i+1}(x)* is a conformal Combescure transf and preseves C-coordinates for each 1 ≤ *i* ≤ *n* − 1,
- df_1, \ldots, df_n are linearly independent,

Thm. (D-T)

- If (f_1, \ldots, f_n) is a Christoffel n-tuple, then each f_i is isothermic.
- (*f*₁,..., *f_n*) gives rise to a solution of the $\frac{O(2n,1)}{O(n+1) \times O(n-1,1)}$ -system.
- Solution of the $\frac{O(2n,1)}{O(n+1)\times O(n-1,1)}$ -system and a null basis of $\mathbb{R}^{n-1,1}$ a Christoffel n-tuples.
- The dressing action of $g \in \hat{G}$ with two simple poles gives rise to Darboux transf for Christoffel n-tuples.