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Goals
• Illustrate a connection between

Killing Fields Conservation Laws
of primitive maps as elements of the

characteristic cohomology

dBλ + [ψλ,Bλ] = 0 ϕ ∈ H̄1(M(∞))

• This connection stems from the work of Terng and Wang
(2004), Pinkall and Sterling (1989), and Burstall, Ferus,
Pedit, and Pinkall (1993)—The point is to incorporate
some of these techniques into the framework of the
characteristic cohomology

• Use the connection above to completely determine the
conservation laws as elements of the characteristic
cohomology for

uzz = −f (u) where u : C→ R.
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• Raise questions about what information is stored in
conservation laws, thought of as cohomology classes
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Nonlinear Poisson equation

In order to encode
∂2u

∂z∂z
= −f (u),

as an EDS with independence condition, let
M = J1(C,R) = C× R× C have coordinates (z , u, u0) and
define the differential forms

ζ = dz

η0 = du − u0ζ − u0ζ

ψ = −
√
−1

2
(ζ ∧ du0 − ζ ∧ du0 + 2f dz ∧ dz).

I = 〈η0, ψ〉.

Independence condition: ζ∧ζ 6= 0.
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Nonlinear Poisson equation:
infinite prolongation

To study higher-order conservation laws we turn to the infinite
prolongation M(∞)

which has coordinates

{z , u, u0, u1, . . .}

where ui = ∂ i+1

∂z i+1 u on solutions. The ideal I(∞) on M(∞) is

generated by a (formally Frobenius) subbundle I(∞). Define the

vector field e−1 on M(∞) to be the dual of ζ.

If A : M(∞) → C then dA ≡ e−1(A)ζ + e−1(A)ζ modulo I(∞).
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Nonlinear Poisson equation:
S1-symmetry and weighted-degree

(z , u)→ (λ−1z , u)

is a symmetry of
uzz = −f (u)

for λ ∈ C, |λ| = 1.

S1-action on M(∞):

Fλ : M(∞) → M(∞)

Fλ(z , u, uj) = (λ−1z , u, λj+1uj)

F ∗λ I(∞) = I(∞)
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Conservation laws as elements of
the characteristic cohomology

Let (M(∞), I(∞)) be the infinite prolongation of the EDS
corresponding to uzz = −f .

Group of Conservation Laws:

H
1

:= H1
(

Ω∗(M(∞))/I(∞),d
)

=

{
ϕ ∈ Ω1(M(∞)) | dϕ ∈ I(∞)

}
I(∞) + dΩ0(M(∞))
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Analogy with Chern classes

Ck // V

π

��

 ci (V ) ∈ H2i (X ,Z)

X
To each complex vector bundle we associate Chern classes that
measure the twisting of the bundle.
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Universal Approach

The Chern classes of the universal bundle generate the
cohomology of the infinite Grassmanian:

Ck // Uk

πk

��
Gr(k,∞)

Z · 〈c1(Uk), . . . , ck(Uk)〉 = H2i (Gr(k,∞),Z)

ci (V ) = f ∗(ci (Uk)) for f : X → Gr(k ,∞) a classifying map.
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Characteristic cohomology induces
de Rham cohomolgy on solutions

Solution EDS

(N, ι)
ι // (M, I)

[ι∗(ϕ)]dR ∈ H1
dR(N) [ϕ]CC ∈ H

1oo
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The space of generating functions

For A : M(∞) → C

E(A) := e−1e−1(A) + fuA.

V = ker(E) ∩ {P : Puiuj = Pu = 0}

Vd =
{

P ∈ V | F ∗λ(P) = λdP
}

From now on, assume that fu 6= αf + β for any α, β ∈ R.
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The space of generating functions

Joint work with Oliver Goertsches (Selecta 2011)

Theorem (A)

1 V ∼= H
1

2 V = ⊕d∈ZVd

3 dimC(Vd) ≤ 1

4 dimC(V2n) = 0 for n 6= 0

5 For d 6= 0, P ∈ Vd is a polynomial and
P = c · ud−1 + {u0, u1, . . . , ud−2}, c ∈ C

6 If f , fu, fuu are linearly independent over R, then Vd = 0
for d ≥ 2: No higher-order conservation laws

7 If fuu = βf for β ∈ R (e.g. f = sin, f = sinh) then
dimC(V2n+1) = 1 for all n ∈ Z.
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∂2u

∂z∂z
= −f (u)

• Olver (1977): Recursion operators involving d
dx

−1
to

generate a hierarchy of conservation laws for uxt = sin(u)
Is there such a recursion operator for Tzitzeica:
f (u) = e−2u − eu?

• Dodd and Bullough (1977): Infinitely many polynomial
conserved densities for fuu = βf
Falsely claim that Tzitzeica has only finitely many
polynomial conserved densities

• Zhiber and Shabat (1979): classify potentials which have
hidden symmetries
Do not seem to prove that infinitely many symmetries
exist for Tzitzeica
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• Pinkall and Sterling (1989): Infinitely many Jacobi fields
for fuu = βf ; Recursion process, needs Poincare Lemma

Not clear if the recursion can be extended to Tzitzeica

• Guthrie (1994): Recursion process, needs Poincare Lemma

• Many other interrelated and overlapping studies of
nonlinear Poisson equations: Terng, Bolton, Pedit,
Woodward, Burstall, Bryant, Griffiths, Hsu, . . .

• In what sense have all the conservation laws or symmetries
been found?

• These results do not directly imply a result about H
1

• Is there a general formulation that will work for
u : C→ Rm—the Toda-field equations—when m > 1?
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Tzitzeica equation:

uzz = e−2u − eu (fuu = αfu + 2α2f )

Calculation shows that:

V1 = C · {u0}

V3 = 0

V5 = C · {u4 + 5u2u1 − 5u2u2
0 − 5u2

1u0 + u5
0}

V7 = C · {u6 + 7u4u1 − 7u4u2
0 + 14u3u2 − 28u3u1u0 − 21u2

2u0

− 28u2u2
1 − 14u2u1u2

0 + 14u2u4
0 −

28

3
u3

1u0 + 28u2
1u3

0 −
4

3
u7

0}
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Recursion

We want a recursion for generating functions of the
characteristic cohomology when

fuu = αfu + 2α2f .

1 It must account for V3 = 0

2 It must work for polynomials on M(∞)

3 It should generalize to other equations

Killing fields lead to a recursion that satisfies the first two and
will very likely accommodate the third criterion
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2 It must work for polynomials on M(∞)

3 It should generalize to other equations

Killing fields lead to a recursion that satisfies the first two and
will very likely accommodate the third criterion
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(GC, τ, σ) is a k-symmetric space
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Eigen decomposition

σ, τ induce automorphisms of the Lie algebra gC of GC.
(Assume that gC ⊂ gl(r ,C))

There is a decomposition of gC into the eigenspaces of τ :

gC = g0 ⊕ g1 ⊕ . . .⊕ g−1

where gj is the eigenspace of τ with eigenvalue µj , for some

primitive kth-root of unity µ.
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Primitive maps

Let N be a simply connected Riemann surface.

The map
φ : N → G/K has a framing F : N → G.

The Maurer-Cartan form ω on G induces a flat connection
ψ = F ∗(ω) on N.

ψ = ψ0 + . . .+ ψ−1.

φ is primitive if ψ = ψ−1 + ψ0 + ψ1 and ψ−1 ∈ Ω(1,0)(N).

which is equivalent to
ψλ = ψ−1λ

−1 + ψ0 + ψ1λ is flat
ψ−1 ∈ Ω(1,0)(N).
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Primitive maps and the Toda-field

Bolton, Pedit, Woodward (1995) show that, when K = T m,
there exist coordinates and a frame for which

F−1Fz = ψ

(
∂

∂z

)
= Uz + Ad exp(B)(U)

for U : C→ Rm and B ∈ g satisfying

Uzz = −T (U) (Toda equations)

where T (U) =
∑

i ,j(Aie
aijUj ) is given in terms of roots of gC.
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Primitive maps and the Toda-field

SU(3)/SO(2) is a 6-symmetric space.

The Toda field equation
reduces to the Tzitzeica equation

uzz = e−2u − eu

For the SU(3)/SO(2) primitive map system, the Killing field
equations can be turned into a recursion mapping Vd → Vd+6.

There are two stages of the recursion that require a relative
Poincare lemma. This relative Poincare lemma follows from the
vanishing result V2n = 0.
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Killing fields
based loop algebra associated to gC

L(gC) ={
Bλ ∈ gC[[λ, λ−1]] : if Bλ =

∑
n

Bnλn then B0 = 0

}

and the twisted based loop algebra

Lσ,τ (gC) =
{

Bλ ∈ L(gC) : σ(B
λ
−1) = Bλ τ(Bµλ) = Bλ

}
asociated to the k-symmetric space (GC, σ, τ).

Definition
A formal Killing field for the family of flat connections ψλ on
the Riemann surface N is a map Bλ : N → Lσ,τ (gC) satisfying

dBλ + [ψλ,Bλ] = 0.
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Killing fields and infinitesimal
symmetries

Burstall, Ferus, Pedit, Pinkall (1993) introduce Killing fields of
Harmonic maps into symmetric spaces as a way to package
infinitesimal symmetries (Jacobi fields)
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Killing fields unpacked

The Killing field satisfies Bkn+j ∈ gj .

The Killing field equation decomposes into

∂B j + [ψ′0,B
j ] + [ψ−1,B

j+1] = 0

∂̄B j + [ψ′′0 ,B
j ] + [ψ1,B

j−1] = 0.
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Killing fields and conservation laws

Assume that K is abelian.

Let A−1 = ψ−1

(
∂
∂z

)
, A1 = ψ1

(
∂
∂z

)
and

For P : N → g0 define

E(GC,σ,τ)(P) = ∆P + 4[A−1, [A1,P]].

We find that E(GC,σ,τ)(Bkn) = 0 for Bkn ∈ g0.
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For any pair of functions P,Q ∈ Ω0(N, g0) define

ϕP,Q = −
√
−1J(κ(P, dQ)− κ(Q,dP)) ∈ Ω1(N,C)

where κ is the Killing form of gC.

Lemma
The one-form ϕP,Q is closed if P,Q ∈ ker(E(GC,σ,τ)).

The g0-components of Killing fields give rise to conservation
laws for primitive maps (when K = T m).

Terng and Wang (2004) gave a similar formula for conservation
laws of the U/K -systems using Killing field-like objects.
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The recursion for fuu = αfu + βf

The Recursion: Let an ∈ V2n+1 for some n ≥ 0.

Define the one-form

αn =

√
−1

3
√

2
(an
−1,−1 + 2u0an

−1)ζ −
√
−1√
2

euanζ (1)

dαn ≡ 0 modulo I(∞) so [αn] ∈ H
1

Thus it must correspond to an element of Pα ∈ V2n+2 = 0.
Thus [αn] = 0

There exists bn : M(∞) → C of weighted-degree 2n + 2 such
that dbn ≡ αn modulo I(∞).

bn is a polynomial in u0, . . . , u2n+1.
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f n =
√
−1e

u
2 (bn
−1 − u0bn)

rn =
1

3
√
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e−

u
2 (f n
−1 +

1

2
u0f n)

sn = − 1√
2

e−
u
2 rn
−1.
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Again, define a one-form

βn =

√
−1

3
eu(sn

−1,−1 − u0sn
−1)ζ −

√
−1e−usnζ (2)

Once again, dβn ≡ 0 modulo I(∞)

V2n+6 = 0 implies there exists tn : M(∞) → C of
weighted-degree 2n + 6 such that dtn ≡ βn modulo I(∞).

tn is a polynomial in u0, . . . , u2n+5.
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Finally define
an+1 = −

√
−2(tn

−1 + u0tn) (3)

One checks that an+1 ∈ V2n+7

Summary: There is a level six recursion derived from the
Killing field equation; requires V2n = 0.
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1u0 + u5
0}

V9 = C · {u8 + · · · }
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for the order six recursion, implies that V2n+1
∼= C for n ∈ Z

and n 6= 1,−2.
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Determine the characteristic cohomology for all Toda-field
equations associated with primitive maps to k-symmetric
spaces.

We have done the cases in which K = SO(2):

1 SU(2)/SO(2)—Gauss maps of CMC surfaces in R3

2-symmetric space

2 SO(4)/SO(2)—Minimal surfaces in S3

4-symmetric space

3 SU(3)/SO(2)—Minimal Legendrian surfaces in S5

6-symmetric space
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Finite type solutions

Let ι : N → (M, I) be an integral manifold of the EDS
associated to the nonlinear Poisson equation.

Let H̄1 = R · {[ϕ1], [ϕ2], . . .} and let H = R · {ϕ1, ϕ2, . . .} with
ϕi in ‘normal form.’

Definition
The integral manifold ι : N → M is of finite type if
dimR(ι∗(H)) <∞.

This agrees with the definition of finite type given by Pinkall
and Sterling.
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Suppose that ι : C→ M(∞) is a doubly periodic solution for
the lattice Λ ⊂ C, of finite type n.

Let {[ϕj ]} be a basis for H
1

such that the generating function
Pj of ϕj satisfies Pj = uj−1 + · · · for j ≥ 1.

Let H̄1
n := {[ϕj ] ∈ H̄1 | j ≤ n} ∼= R2n

ι∗ :H̄1
n → H1(C/Λ,R)

R2n → R2

ι̂∗ : H1(C/Λ,R)→ (H̄1
n)∗

The angles determining this linear embedding should contain
geometric information.
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Conjecture

ι̂∗ : H1(C/Λ,R)→ (H̄1
n)∗ descends to a map

ι̂∗ : H1(C/Λ,R)/Λ∗ → R2n/Γ ⊂ Jac(Xu)

where Γ ⊂ R2n is a lattice of real rank 2n,

and Xu is the spectral curve associated to the solution u(z , z)
of the non-linear Poisson equation.

Idea: Conservation laws define an extended Abel-Jacobi map
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Global approach

Global conservation laws for minimal surfaces N → S3 might
lead to a maximally linear embedding

N → Jac(N) ↪→ T 2n

even if N is a compact Riemann surface with genus> 1, thus
extending the spectral curve type construction to higher genus
domains.

Likely to require:

Ñ → Jac(Ñ) ↪→ T 2n

where Ñ → N branched cover.

Pedit has suggested the same possibility based on the multiplier
spectral curve.
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