Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Killing fields and conservation laws

Daniel Fox

June 13, 2011

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

• Illustrate a connection between

Killing Fields	Conservation Laws
of primitive maps	as elements of the
	characteristic cohomology
$\mathrm{d}B_{\lambda} + [\psi_{\lambda}, B_{\lambda}] = 0$	$arphi\inar{H}^1(M^{(\infty)})$

ヘロト ヘ週ト ヘヨト ヘヨト

æ

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

• Illustrate a connection between

Killing Fields	Conservation Laws
of primitive maps	as elements of the
	characteristic cohomology
$\mathrm{d}B_{\lambda} + [\psi_{\lambda}, B_{\lambda}] = 0$	$arphi\inar{H}^1(M^{(\infty)})$

Goals

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

This connection stems from the work of Terng and Wang (2004), Pinkall and Sterling (1989), and Burstall, Ferus, Pedit, and Pinkall (1993)—The point is to incorporate some of these techniques into the framework of the characteristic cohomology

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

• Illustrate a connection between

Killing Fields	Conservation Laws
of primitive maps	as elements of the
	characteristic cohomology
$\mathrm{d}B_{\lambda} + [\psi_{\lambda}, B_{\lambda}] = 0$	$arphi\inar{H}^1(M^{(\infty)})$

Goals

- This connection stems from the work of Terng and Wang (2004), Pinkall and Sterling (1989), and Burstall, Ferus, Pedit, and Pinkall (1993)—The point is to incorporate some of these techniques into the framework of the characteristic cohomology
- Use the connection above to completely determine the conservation laws as elements of the characteristic cohomology for

$$u_{z\overline{z}} = -f(u)$$
 where $u: \mathbb{C} \to \mathbb{R}$.

Daniel Fox

Goals

- Nonlinear Poisson equation
- Characteristic Cohomology
- Structure theorems for \overline{H}^1
- Previous work
- The Tzitzeic equation
- Primitive maps and Killing fields
- Killing fields and conservation laws
- The Killing field recursion
- Questions and Conjectures
- Finite type solutions

Goals

・ロト ・ 雪 ト ・ ヨ ト

э.

• Reinterpret finite type solutions using conservation laws

Daniel Fox

Goals

- Nonlinear Poisson equation
- Characteristic Cohomology
- Structure theorems for \overline{H}^1
- Previous work
- The Tzitzeica equation
- Primitive maps and Killing field
- Killing fields and conservation laws
- The Killing field recursion
- Questions and Conjectures
- Finite type solutions

Goals

イロト 不得 トイヨト イヨト

- Reinterpret finite type solutions using conservation laws
- Raise questions about what information is stored in conservation laws, thought of as cohomology classes

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Nonlinear Poisson equation

In order to encode

$$\frac{\partial^2 u}{\partial z \partial \overline{z}} = -f(u),$$

as an EDS with independence condition, let $M = J^1(\mathbb{C}, \mathbb{R}) = \mathbb{C} \times \mathbb{R} \times \mathbb{C}$ have coordinates (z, u, u_0) and define the differential forms

$$\begin{split} \zeta &= \mathrm{d}z \\ \eta_0 &= \mathrm{d}u - u_0 \zeta - \overline{u}_0 \overline{\zeta} \\ \psi &= -\frac{\sqrt{-1}}{2} (\zeta \wedge \mathrm{d}u_0 - \overline{\zeta} \wedge \mathrm{d}\overline{u}_0 + 2f \mathrm{d}z \wedge \mathrm{d}\overline{z}). \end{split}$$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Nonlinear Poisson equation

In order to encode

$$\frac{\partial^2 u}{\partial z \partial \overline{z}} = -f(u),$$

as an EDS with independence condition, let $M = J^1(\mathbb{C}, \mathbb{R}) = \mathbb{C} \times \mathbb{R} \times \mathbb{C}$ have coordinates (z, u, u_0) and define the differential forms

$$\begin{split} \zeta &= \mathrm{d}z \\ \eta_0 &= \mathrm{d}u - u_0 \zeta - \overline{u}_0 \overline{\zeta} \\ \psi &= -\frac{\sqrt{-1}}{2} (\zeta \wedge \mathrm{d}u_0 - \overline{\zeta} \wedge \mathrm{d}\overline{u}_0 + 2f \mathrm{d}z \wedge \mathrm{d}\overline{z}). \end{split}$$

$$\mathcal{I} = \langle \eta_0, \psi \rangle$$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Nonlinear Poisson equation

In order to encode

$$\frac{\partial^2 u}{\partial z \partial \overline{z}} = -f(u),$$

as an EDS with independence condition, let $M = J^1(\mathbb{C}, \mathbb{R}) = \mathbb{C} \times \mathbb{R} \times \mathbb{C}$ have coordinates (z, u, u_0) and define the differential forms

$$egin{aligned} &\zeta = \mathrm{d}z \ &\eta_0 = \mathrm{d}u - u_0\zeta - \overline{u}_0\overline{\zeta} \ &\psi = -rac{\sqrt{-1}}{2} (\zeta \wedge \mathrm{d}u_0 - \overline{\zeta} \wedge \mathrm{d}\overline{u}_0 + 2f\mathrm{d}z \wedge \mathrm{d}\overline{z}). \end{aligned}$$

$$\mathcal{I} = \langle \eta_0, \psi \rangle.$$

Independence condition: $\zeta \wedge \overline{\zeta} \neq 0$.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Nonlinear Poisson equation: infinite prolongation

To study higher-order conservation laws we turn to the infinite prolongation $M^{(\infty)}$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Nonlinear Poisson equation: infinite prolongation

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

To study higher-order conservation laws we turn to the infinite prolongation $M^{(\infty)}$ which has coordinates

 $\{z, u, u_0, u_1, \ldots\}$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

 $\frac{\text{theorems for}}{H^1}$

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Nonlinear Poisson equation: infinite prolongation

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

To study higher-order conservation laws we turn to the infinite prolongation $M^{(\infty)}$ which has coordinates

$$\{z, u, u_0, u_1, \ldots\}$$

where $u_i = \frac{\partial^{i+1}}{\partial z^{i+1}}u$ on solutions.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Nonlinear Poisson equation: infinite prolongation

To study higher-order conservation laws we turn to the infinite prolongation $M^{(\infty)}$ which has coordinates

$$\{z, u, u_0, u_1, \ldots\}$$

where $u_i = \frac{\partial^{i+1}}{\partial z^{i+1}}u$ on solutions. The ideal $\mathcal{I}^{(\infty)}$ on $M^{(\infty)}$ is generated by a (formally Frobenius) subbundle $I^{(\infty)}$.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Nonlinear Poisson equation: infinite prolongation

To study higher-order conservation laws we turn to the infinite prolongation $M^{(\infty)}$ which has coordinates

$$\{z, u, u_0, u_1, \ldots\}$$

where $u_i = \frac{\partial^{i+1}}{\partial z^{i+1}}u$ on solutions. The ideal $\mathcal{I}^{(\infty)}$ on $M^{(\infty)}$ is generated by a (formally Frobenius) subbundle $I^{(\infty)}$. Define the vector field e_{-1} on $M^{(\infty)}$ to be the dual of ζ .

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Nonlinear Poisson equation: infinite prolongation

To study higher-order conservation laws we turn to the infinite prolongation $M^{(\infty)}$ which has coordinates

$$\{z, u, u_0, u_1, \ldots\}$$

where $u_i = \frac{\partial^{i+1}}{\partial z^{i+1}}u$ on solutions. The ideal $\mathcal{I}^{(\infty)}$ on $M^{(\infty)}$ is generated by a (formally Frobenius) subbundle $I^{(\infty)}$. Define the vector field e_{-1} on $M^{(\infty)}$ to be the dual of ζ .

If $A: M^{(\infty)} \to \mathbb{C}$ then $\mathrm{d}A \equiv e_{-1}(A)\zeta + \overline{e_{-1}}(A)\overline{\zeta}$ modulo $\mathrm{I}^{(\infty)}$.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Nonlinear Poisson equation: S¹-symmetry and weighted-degree

$$(z, u) \rightarrow (\lambda^{-1}z, u)$$

is a symmetry of

$$u_{z\overline{z}}=-f(u)$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

for $\lambda \in \mathbb{C}$, $|\lambda| = 1$.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Nonlinear Poisson equation: \mathbb{S}^1 -symmetry and weighted-degree

$$(z, u) \rightarrow (\lambda^{-1}z, u)$$

is a symmetry of

$$u_{z\overline{z}}=-f(u)$$

イロト 不得 トイヨト イヨト

э

for $\lambda \in \mathbb{C}$, $|\lambda| = 1$.

 \mathbb{S}^1 -action on $M^{(\infty)}$:

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Nonlinear Poisson equation: \mathbb{S}^1 -symmetry and weighted-degree

$$(z, u) \rightarrow (\lambda^{-1}z, u)$$

is a symmetry of

$$u_{z\overline{z}}=-f(u)$$

for $\lambda \in \mathbb{C}$, $|\lambda| = 1$.

 \mathbb{S}^1 -action on $M^{(\infty)}$:

 $F_{\lambda}: M^{(\infty)} \to M^{(\infty)}$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Nonlinear Poisson equation: \mathbb{S}^1 -symmetry and weighted-degree

$$(z, u) \rightarrow (\lambda^{-1}z, u)$$

is a symmetry of

$$u_{z\overline{z}}=-f(u)$$

for $\lambda \in \mathbb{C}$, $|\lambda| = 1$.

 \mathbb{S}^1 -action on $M^{(\infty)}$:

$$F_{\lambda}: M^{(\infty)} \to M^{(\infty)}$$

$$F_{\lambda}(z, u, u_j) = (\lambda^{-1}z, u, \lambda^{j+1}u_j)$$

イロト 不得 トイヨト イヨト

э

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Nonlinear Poisson equation: S¹-symmetry and weighted-degree

$$(z, u) \rightarrow (\lambda^{-1}z, u)$$

$$u_{z\overline{z}}=-f(u)$$

for $\lambda \in \mathbb{C}$, $|\lambda| = 1$.

 \mathbb{S}^1 -action on $M^{(\infty)}$:

$$F_{\lambda}: M^{(\infty)} \to M^{(\infty)}$$

$$F_{\lambda}(z, u, u_j) = (\lambda^{-1}z, u, \lambda^{j+1}u_j)$$

$$F_{\lambda}^* \mathbf{I}^{(\infty)} = \mathbf{I}^{(\infty)}$$

・ロト・西ト・西ト・日・ 日・ シュウ

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Conservation laws as elements of the characteristic cohomology

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Let $(M^{(\infty)}, \mathcal{I}^{(\infty)})$ be the infinite prolongation of the EDS corresponding to $u_{z\overline{z}} = -f$.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Conservation laws as elements of the characteristic cohomology

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Let $(M^{(\infty)}, \mathcal{I}^{(\infty)})$ be the infinite prolongation of the EDS corresponding to $u_{z\overline{z}} = -f$.

Group of Conservation Laws:

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Conservation laws as elements of the characteristic cohomology

Let $(M^{(\infty)}, \mathcal{I}^{(\infty)})$ be the infinite prolongation of the EDS corresponding to $u_{z\overline{z}} = -f$.

Group of Conservation Laws:

$$\begin{split} \overline{H}^{1} &:= H^{1}\left(\Omega^{*}(M^{(\infty)})/\mathcal{I}^{(\infty)}, \overline{\mathrm{d}}\right) \\ &= \frac{\left\{\varphi \in \Omega^{1}(M^{(\infty)}) \mid \mathrm{d}\varphi \in \mathcal{I}^{(\infty)}\right\}}{\mathrm{I}^{(\infty)} + \mathrm{d}\Omega^{0}(M^{(\infty)})} \end{split}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

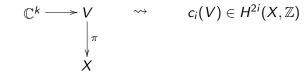
Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Analogy with Chern classes



To each complex vector bundle we associate Chern classes that measure the *twisting of the bundle*.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Universal Approach

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

The Chern classes of the universal bundle generate the cohomology of the infinite Grassmanian:

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

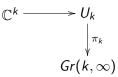
Questions and Conjectures

Finite type solutions

Universal Approach

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Chern classes of the universal bundle generate the cohomology of the infinite Grassmanian:



Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

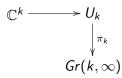
Questions and Conjectures

Finite type solutions

Universal Approach

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Chern classes of the universal bundle generate the cohomology of the infinite Grassmanian:



 $\mathbb{Z} \cdot \langle c_1(U_k), \ldots, c_k(U_k) \rangle = H^{2i}(Gr(k, \infty), \mathbb{Z})$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

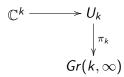
Questions and Conjectures

Finite type solutions

Universal Approach

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Chern classes of the universal bundle generate the cohomology of the infinite Grassmanian:



$$\mathbb{Z} \cdot \langle c_1(U_k), \ldots, c_k(U_k) \rangle = H^{2i}(Gr(k,\infty),\mathbb{Z})$$

 $c_i(V) = f^*(c_i(U_k))$ for $f: X \to Gr(k, \infty)$ a classifying map.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Characteristic cohomology induces de Rham cohomolgy on solutions

EDS

Solution

 $(N,\iota) \xrightarrow{\iota} (M,\mathcal{I})$

 $[\iota^*(\varphi)]_{dR} \in H^1_{dR}(N) \longleftarrow [\varphi]_{CC} \in \overline{H}^1$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The space of generating functions

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

For $A: M^{(\infty)} \to \mathbb{C}$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The space of generating functions

For $A: M^{(\infty)} \to \mathbb{C}$

$$\mathcal{E}(A) := e_{-1}\overline{e_{-1}}(A) + f_u A.$$

イロト 不得 トイヨト イヨト

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The space of generating functions

For $A: M^{(\infty)} \to \mathbb{C}$

$$\mathcal{E}(A) := e_{-1}\overline{e_{-1}}(A) + f_u A.$$

$$V = \ker(\mathcal{E}) \cap \{P : P_{u_i \overline{u}_j} = P_u = 0\}$$

イロト 不得 トイヨト イヨト

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The space of generating functions

For $A: M^{(\infty)} \to \mathbb{C}$

$$\mathcal{E}(A) := e_{-1}\overline{e_{-1}}(A) + f_u A.$$

$$V = \ker(\mathcal{E}) \cap \{P : P_{u_i \overline{u}_j} = P_u = 0\}$$
 $V_d = \left\{P \in V \mid F_{\lambda}^*(P) = \lambda^d P
ight\}$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

 $\frac{\text{theorems for}}{\overline{H}^1}$

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The space of generating functions

For $A: M^{(\infty)} \to \mathbb{C}$

$$\mathcal{E}(A) := e_{-1}\overline{e_{-1}}(A) + f_u A.$$

$$V = \ker(\mathcal{E}) \cap \{P : P_{u_i \overline{u}_j} = P_u = 0\}$$

$$V_d = \left\{ P \in V \mid F_{\lambda}^*(P) = \lambda^d P \right\}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

From now on, assume that $f_u \neq \alpha f + \beta$ for any $\alpha, \beta \in \mathbb{R}$.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

 $\frac{\text{theorems for}}{H^1}$

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The space of generating functions

イロト 不得 トイヨト イヨト

3

Joint work with Oliver Goertsches (Selecta 2011)

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The space of generating functions

Joint work with Oliver Goertsches (Selecta 2011)

Theorem (A)

 $V \cong \overline{H}^1$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The space of generating functions

Joint work with Oliver Goertsches (Selecta 2011)

Theorem (A)

1 $V \cong \overline{H}^1$ 2 $V = \bigoplus_{d \in \mathbb{Z}} V_d$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The space of generating functions

Joint work with Oliver Goertsches (Selecta 2011)

Theorem (A)

 $V \cong \overline{H}^1$

3 dim_{\mathbb{C}} $(V_d) \leq 1$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

 $\begin{array}{c} \text{Structure} \\ \text{theorems for} \\ \overline{H}^1 \end{array}$

Previous work

The Tzitzeica equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The space of generating functions

Joint work with Oliver Goertsches (Selecta 2011)

Theorem (A)

- $V \cong \overline{H}^1$
- $2 \ V = \oplus_{d \in \mathbb{Z}} V_d$

3 dim
$$_{\mathbb{C}}(V_d) \leq 1$$

4 dim_{\mathbb{C}} $(V_{2n}) = 0$ for $n \neq 0$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

 $\begin{array}{c} \text{Structure} \\ \text{theorems for} \\ \overline{H}^1 \end{array}$

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The space of generating functions

Joint work with Oliver Goertsches (Selecta 2011)

Theorem (A)

- $V \cong \overline{H}^1$
- $2 \ V = \oplus_{d \in \mathbb{Z}} V_d$
- 3 dim $_{\mathbb{C}}(V_d) \leq 1$

4 dim_{$$\mathbb{C}$$} $(V_{2n}) = 0$ for $n \neq 0$

6 For
$$d \neq 0$$
, $P \in V_d$ is a polynomial and $P = c \cdot u_{d-1} + \{u_0, u_1, \dots, u_{d-2}\}, c \in \mathbb{C}$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

 $\begin{array}{c} \text{Structure} \\ \text{theorems for} \\ \overline{H}^1 \end{array}$

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The space of generating functions

Joint work with Oliver Goertsches (Selecta 2011)

Theorem (A)

- $V \cong \overline{H}^1$
- $2 \ V = \oplus_{d \in \mathbb{Z}} V_d$
- 3 dim $_{\mathbb{C}}(V_d) \leq 1$
- 4 dim_{\mathbb{C}} $(V_{2n}) = 0$ for $n \neq 0$
- **5** For $d \neq 0$, $P \in V_d$ is a polynomial and
 - $P = c \cdot u_{d-1} + \{u_0, u_1, \dots, u_{d-2}\}, \ c \in \mathbb{C}$

If f, f_u, f_{uu} are linearly independent over ℝ, then V_d = 0 for d ≥ 2: No higher-order conservation laws

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

 $\begin{array}{c} \text{Structure} \\ \text{theorems for} \\ \overline{H}^1 \end{array}$

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The space of generating functions

Joint work with Oliver Goertsches (Selecta 2011)

Theorem (A)

- $V \cong \overline{H}^1$
- $2 \ V = \oplus_{d \in \mathbb{Z}} V_d$
- 3 dim $_{\mathbb{C}}(V_d) \leq 1$
- 4 dim_{\mathbb{C}} $(V_{2n}) = 0$ for $n \neq 0$
- **5** For $d \neq 0$, $P \in V_d$ is a polynomial and $P = c \cdot u_{d-1} + \{u_0, u_1, \dots, u_{d-2}\}, c \in \mathbb{C}$
- If f, f_u, f_{uu} are linearly independent over ℝ, then V_d = 0 for d ≥ 2: No higher-order conservation laws

7) If
$$f_{uu} = \beta f$$
 for $\beta \in \mathbb{R}$ (e.g. $f = \sin, f = \sinh$) then $\dim_{\mathbb{C}}(V_{2n+1}) = 1$ for all $n \in \mathbb{Z}$.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Previous work

・ロト ・四ト ・ヨト ・ヨト

æ

$$\frac{\partial^2 u}{\partial z \partial \overline{z}} = -f(u)$$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Previous work

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

$$\frac{\partial^2 u}{\partial z \partial \overline{z}} = -f(u)$$

• Olver (1977): Recursion operators involving $\frac{d}{dx}^{-1}$ to generate a hierarchy of conservation laws for $u_{xt} = \sin(u)$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Previous work

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

$$\frac{\partial^2 u}{\partial z \partial \overline{z}} = -f(u)$$

Olver (1977): Recursion operators involving d/dx⁻¹ to generate a hierarchy of conservation laws for u_{xt} = sin(u) Is there such a recursion operator for Tzitzeica:
 f(u) = e^{-2u} - e^u?

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Previous work

$$\frac{\partial^2 u}{\partial z \partial \overline{z}} = -f(u)$$

- Olver (1977): Recursion operators involving d/dx⁻¹ to generate a hierarchy of conservation laws for u_{xt} = sin(u) Is there such a recursion operator for Tzitzeica:
 f(u) = e^{-2u} e^u?
- Dodd and Bullough (1977): Infinitely many polynomial conserved densities for $f_{uu} = \beta f$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Previous work

$$\frac{\partial^2 u}{\partial z \partial \overline{z}} = -f(u)$$

- Olver (1977): Recursion operators involving d/dx⁻¹ to generate a hierarchy of conservation laws for u_{xt} = sin(u) Is there such a recursion operator for Tzitzeica:
 f(u) = e^{-2u} e^u?
- Dodd and Bullough (1977): Infinitely many polynomial conserved densities for f_{uu} = βf
 Falsely claim that Tzitzeica has only finitely many polynomial conserved densities

Daniel Fox

Goals

Nonlinear Poisson equation

- Characteristic Cohomology
- Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Previous work

$$\frac{\partial^2 u}{\partial z \partial \overline{z}} = -f(u)$$

- Olver (1977): Recursion operators involving d/dx⁻¹ to generate a hierarchy of conservation laws for u_{xt} = sin(u) Is there such a recursion operator for Tzitzeica:
 f(u) = e^{-2u} e^u?
- Dodd and Bullough (1977): Infinitely many polynomial conserved densities for f_{uu} = βf
 Falsely claim that Tzitzeica has only finitely many polynomial conserved densities
- Zhiber and Shabat (1979): classify potentials which have hidden symmetries

Daniel Fox

Goals

Nonlinear Poisson equation

- Characteristic Cohomology
- Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Previous work

$$\frac{\partial^2 u}{\partial z \partial \overline{z}} = -f(u)$$

- Olver (1977): Recursion operators involving d/dx⁻¹ to generate a hierarchy of conservation laws for u_{xt} = sin(u) Is there such a recursion operator for Tzitzeica:
 f(u) = e^{-2u} e^u?
- Dodd and Bullough (1977): Infinitely many polynomial conserved densities for f_{uu} = βf
 Falsely claim that Tzitzeica has only finitely many polynomial conserved densities
- Zhiber and Shabat (1979): classify potentials which have hidden symmetries

Do not seem to prove that infinitely many symmetries exist for Tzitzeica

Daniel Fox

Goals

- Nonlinear Poisson equation
- Characteristic Cohomology
- Structure theorems for \overline{H}^1

Previous work

- The Tzitzeica equation
- Primitive maps and Killing fields
- Killing fields and conservation laws
- The Killing field recursion
- Questions and Conjectures
- Finite type solutions

Previous work

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

 Pinkall and Sterling (1989): Infinitely many Jacobi fields for f_{uu} = βf; Recursion process, needs Poincare Lemma

Daniel Fox

Goals

- Nonlinear Poisson equation
- Characteristic Cohomology
- Structure theorems for \overline{H}^1

Previous work

- The Tzitzeica equation
- Primitive maps and Killing fields
- Killing fields and conservation laws
- The Killing field recursion
- Questions and Conjectures
- Finite type solutions

Previous work

 Pinkall and Sterling (1989): Infinitely many Jacobi fields for f_{uu} = βf; Recursion process, needs Poincare Lemma Not clear if the recursion can be extended to Tzitzeica

Daniel Fox

Goals

- Nonlinear Poisson equation
- Characteristic Cohomology
- Structure theorems for \overline{H}^1

Previous work

- The Tzitzeic equation
- Primitive maps and Killing fields
- Killing fields and conservation laws
- The Killing field recursion
- Questions and Conjectures
- Finite type solutions

Previous work

- Pinkall and Sterling (1989): Infinitely many Jacobi fields for f_{uu} = βf; Recursion process, needs Poincare Lemma Not clear if the recursion can be extended to Tzitzeica
- Guthrie (1994): Recursion process, needs Poincare Lemma

Daniel Fox

Goals

- Nonlinear Poisson equation
- Characteristic Cohomology
- Structure theorems for \overline{H}^1

Previous work

- The Tzitzeica equation
- Primitive maps and Killing fields
- Killing fields and conservation laws
- The Killing field recursion
- Questions and Conjectures
- Finite type solutions

Previous work

- Pinkall and Sterling (1989): Infinitely many Jacobi fields for f_{uu} = βf; Recursion process, needs Poincare Lemma Not clear if the recursion can be extended to Tzitzeica
- Guthrie (1994): Recursion process, needs Poincare Lemma
- Many other interrelated and overlapping studies of nonlinear Poisson equations: Terng, Bolton, Pedit, Woodward, Burstall, Bryant, Griffiths, Hsu, ...

Daniel Fox

Goals

- Nonlinear Poisson equation
- Characteristic Cohomology
- Structure theorems for \overline{H}^1

Previous work

- The Tzitzeica equation
- Primitive maps and Killing fields
- Killing fields and conservation laws
- The Killing field recursion
- Questions and Conjectures
- Finite type solutions

Previous work

- Pinkall and Sterling (1989): Infinitely many Jacobi fields for f_{uu} = βf; Recursion process, needs Poincare Lemma Not clear if the recursion can be extended to Tzitzeica
- Guthrie (1994): Recursion process, needs Poincare Lemma
- Many other interrelated and overlapping studies of nonlinear Poisson equations: Terng, Bolton, Pedit, Woodward, Burstall, Bryant, Griffiths, Hsu, ...
- In what sense have **all** the conservation laws or symmetries been found?

Daniel Fox

Goals

- Nonlinear Poisson equation
- Characteristic Cohomology
- Structure theorems for \overline{H}^1

Previous work

- The Tzitzeica equation
- Primitive maps and Killing fields
- Killing fields and conservation laws
- The Killing field recursion
- Questions and Conjectures
- Finite type solutions

Previous work

- Pinkall and Sterling (1989): Infinitely many Jacobi fields for f_{uu} = βf; Recursion process, needs Poincare Lemma Not clear if the recursion can be extended to Tzitzeica
- Guthrie (1994): Recursion process, needs Poincare Lemma
- Many other interrelated and overlapping studies of nonlinear Poisson equations: Terng, Bolton, Pedit, Woodward, Burstall, Bryant, Griffiths, Hsu, ...
- In what sense have **all** the conservation laws or symmetries been found?
- These results do not directly imply a result about \overline{H}^1

Daniel Fox

Goals

- Nonlinear Poisson equation
- Characteristic Cohomology
- Structure theorems for \overline{H}^1

Previous work

- The Tzitzeica equation
- Primitive maps and Killing fields
- Killing fields and conservation laws
- The Killing field recursion
- Questions and Conjectures
- Finite type solutions

Previous work

- Pinkall and Sterling (1989): Infinitely many Jacobi fields for f_{uu} = βf; Recursion process, needs Poincare Lemma Not clear if the recursion can be extended to Tzitzeica
- Guthrie (1994): Recursion process, needs Poincare Lemma
- Many other interrelated and overlapping studies of nonlinear Poisson equations: Terng, Bolton, Pedit, Woodward, Burstall, Bryant, Griffiths, Hsu, ...
- In what sense have **all** the conservation laws or symmetries been found?
- These results do not directly imply a result about \overline{H}^{\perp}
- Is there a general formulation that will work for $u : \mathbb{C} \to \mathbb{R}^m$ —the Toda-field equations—when m > 1?

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The Tzitzeica equation

・ロト ・ 雪 ト ・ ヨ ト

æ

Tzitzeica equation:

$$u_{z\overline{z}} = e^{-2u} - e^u \quad (f_{uu} = \alpha f_u + 2\alpha^2 f)$$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

 $\frac{\text{Structure}}{H^1}$

Previous work

The Tzitzeica equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The Tzitzeica equation

イロト 不得 トイヨト イヨト

3

Tzitzeica equation:

$$u_{z\overline{z}} = e^{-2u} - e^u \qquad (f_{uu} = \alpha f_u + 2\alpha^2 f)$$

Calculation shows that:

 $V_1 = \mathbb{C} \cdot \{u_0\}$

 $V_{3} = 0$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The Tzitzeica equation

イロト 不得 トイヨト イヨト

3

Tzitzeica equation:

$$u_{z\overline{z}} = e^{-2u} - e^u \quad (f_{uu} = \alpha f_u + 2\alpha^2 f)$$

Calculation shows that:

 $V_{1} = \mathbb{C} \cdot \{u_{0}\}$ $V_{3} = 0$ $V_{5} = \mathbb{C} \cdot \{u_{4} + 5u_{2}u_{1} - 5u_{2}u_{0}^{2} - 5u_{1}^{2}u_{0} + u_{0}^{5}\}$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The Tzitzeica equation

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Tzitzeica equation:

$$u_{z\overline{z}} = e^{-2u} - e^u \qquad (f_{uu} = \alpha f_u + 2\alpha^2 f)$$

Calculation shows that:

$$V_{1} = \mathbb{C} \cdot \{u_{0}\}$$

$$V_{3} = 0$$

$$V_{5} = \mathbb{C} \cdot \{u_{4} + 5u_{2}u_{1} - 5u_{2}u_{0}^{2} - 5u_{1}^{2}u_{0} + u_{0}^{5}\}$$

$$V_{7} = \mathbb{C} \cdot \{u_{6} + 7u_{4}u_{1} - 7u_{4}u_{0}^{2} + 14u_{3}u_{2} - 28u_{3}u_{1}u_{0} - 21u_{2}^{2}u_{0}$$

$$- 28u_{2}u_{1}^{2} - 14u_{2}u_{1}u_{0}^{2} + 14u_{2}u_{0}^{4} - \frac{28}{3}u_{1}^{3}u_{0} + 28u_{1}^{2}u_{0}^{3} - \frac{4}{3}u_{0}^{7}\}$$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Recursion

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

We want a recursion for generating functions of the characteristic cohomology when

$$f_{uu} = \alpha f_u + 2\alpha^2 f.$$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

We want a recursion for generating functions of the characteristic cohomology when

$$f_{uu} = \alpha f_u + 2\alpha^2 f.$$

1 It must account for $V_3 = 0$

Recursion

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

We want a recursion for generating functions of the characteristic cohomology when

$$f_{uu} = \alpha f_u + 2\alpha^2 f.$$

1) It must account for $V_3 = 0$

2 It must work for polynomials on $M^{(\infty)}$

Recursion

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

We want a recursion for generating functions of the characteristic cohomology when

$$f_{uu} = \alpha f_u + 2\alpha^2 f.$$

- **1** It must account for $V_3 = 0$
- **2** It must work for polynomials on $M^{(\infty)}$
- 3 It should generalize to other equations

Recursion

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

We want a recursion for generating functions of the characteristic cohomology when

$$f_{uu} = \alpha f_u + 2\alpha^2 f.$$

- **1** It must account for $V_3 = 0$
- **2** It must work for polynomials on $M^{(\infty)}$
- 3 It should generalize to other equations

Killing fields lead to a recursion that satisfies the first two and will very likely accommodate the third criterion

Recursion

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Primitive maps

イロト 不得 トイヨト イヨト

э.

G compact real form of the semi-simple complex Lie group $G^{\mathbb{C}}$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Primitive maps

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

G compact real form of the semi-simple complex Lie group $G^{\mathbb{C}}$ for the anti-holomorphic involution $\sigma : G^{\mathbb{C}} \to G^{\mathbb{C}}$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

G compact real form of the semi-simple complex Lie group $G^{\mathbb{C}}$ for the anti-holomorphic involution $\sigma : G^{\mathbb{C}} \to G^{\mathbb{C}}$

Primitive maps

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 $\tau:\mathsf{G}^\mathbb{C}\to\mathsf{G}^\mathbb{C}$ automorphism, $\tau^k=1,\,\tau\sigma=\sigma\tau,\,\mathsf{K}^\mathbb{C}$ the group it stabilizes.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

G compact real form of the semi-simple complex Lie group $G^{\mathbb{C}}$ for the anti-holomorphic involution $\sigma : G^{\mathbb{C}} \to G^{\mathbb{C}}$

Primitive maps

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

 $\tau:\mathsf{G}^\mathbb{C}\to\mathsf{G}^\mathbb{C}$ automorphism, $\tau^k=1,\,\tau\sigma=\sigma\tau,\,\mathsf{K}^\mathbb{C}$ the group it stabilizes.

 $(\mathsf{G}^{\mathbb{C}}, \tau, \sigma)$ is a *k*-symmetric space

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Eigen decomposition

 σ, τ induce automorphisms of the Lie algebra $\mathfrak{g}^{\mathbb{C}}$ of $G^{\mathbb{C}}$. (Assume that $\mathfrak{g}^{\mathbb{C}} \subset \mathfrak{gl}(r, \mathbb{C})$)

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Eigen decomposition

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

 σ, τ induce automorphisms of the Lie algebra $\mathfrak{g}^{\mathbb{C}}$ of $G^{\mathbb{C}}$. (Assume that $\mathfrak{g}^{\mathbb{C}} \subset \mathfrak{gl}(r, \mathbb{C})$)

There is a decomposition of $\mathfrak{g}^{\mathbb{C}}$ into the eigenspaces of τ :

$$\mathfrak{g}^{\mathbb{C}} = \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \ldots \oplus \mathfrak{g}_{-1}$$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Eigen decomposition

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

 σ, τ induce automorphisms of the Lie algebra $\mathfrak{g}^{\mathbb{C}}$ of $\mathsf{G}^{\mathbb{C}}$. (Assume that $\mathfrak{g}^{\mathbb{C}} \subset \mathfrak{gl}(r, \mathbb{C})$)

There is a decomposition of $\mathfrak{g}^{\mathbb{C}}$ into the eigenspaces of τ :

$$\mathfrak{g}^{\mathbb{C}} = \mathfrak{g}_0 \oplus \mathfrak{g}_1 \oplus \ldots \oplus \mathfrak{g}_{-1}$$

where \mathfrak{g}_j is the eigenspace of τ with eigenvalue μ^j , for some primitive k^{th} -root of unity μ .

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Primitive maps

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

æ

Let N be a simply connected Riemann surface.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Primitive maps

Let N be a simply connected Riemann surface. The map $\phi: N \to G/K$ has a framing $F: N \to G$.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Primitive maps

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Let N be a simply connected Riemann surface. The map $\phi: N \to G/K$ has a framing $F: N \to G$.

The Maurer-Cartan form ω on G induces a flat connection $\psi = F^*(\omega)$ on N.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Primitive maps

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Let N be a simply connected Riemann surface. The map $\phi: N \to G/K$ has a framing $F: N \to G$.

The Maurer-Cartan form ω on G induces a flat connection $\psi = F^*(\omega)$ on N.

$$\psi = \psi_0 + \ldots + \psi_{-1}.$$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Primitive maps

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Let N be a simply connected Riemann surface. The map $\phi: N \to G/K$ has a framing $F: N \to G$.

The Maurer-Cartan form ω on G induces a flat connection $\psi = F^*(\omega)$ on N.

 $\psi = \psi_0 + \ldots + \psi_{-1}.$

 ϕ is primitive if $\psi = \psi_{-1} + \psi_0 + \psi_1$ and $\psi_{-1} \in \Omega^{(1,0)}(N)$.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Primitive maps

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Let N be a simply connected Riemann surface. The map $\phi: N \to G/K$ has a framing $F: N \to G$.

The Maurer-Cartan form ω on G induces a flat connection $\psi = F^*(\omega)$ on N.

 $\psi = \psi_0 + \ldots + \psi_{-1}.$

 ϕ is primitive if $\psi = \psi_{-1} + \psi_0 + \psi_1$ and $\psi_{-1} \in \Omega^{(1,0)}(N)$.

which is equivalent to

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Primitive maps

Let N be a simply connected Riemann surface. The map $\phi: N \to G/K$ has a framing $F: N \to G$.

The Maurer-Cartan form ω on G induces a flat connection $\psi = F^*(\omega)$ on N.

 $\psi = \psi_0 + \ldots + \psi_{-1}.$

 ϕ is primitive if $\psi = \psi_{-1} + \psi_0 + \psi_1$ and $\psi_{-1} \in \Omega^{(1,0)}(N)$.

which is equivalent to
$$\begin{split} \psi_{\lambda} &= \psi_{-1}\lambda^{-1} + \psi_{0} + \psi_{1}\lambda \text{ is flat} \\ \psi_{-1} &\in \Omega^{(1,0)}(N). \end{split}$$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Primitive maps and the Toda-field

Bolton, Pedit, Woodward (1995) show that, when $K = T^m$, there exist coordinates and a frame for which

$$F^{-1}F_z = \psi\left(\frac{\partial}{\partial z}\right) = U_z + Ad\exp(B)(U)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Primitive maps and the Toda-field

Bolton, Pedit, Woodward (1995) show that, when $K = T^m$, there exist coordinates and a frame for which

$$F^{-1}F_z = \psi\left(\frac{\partial}{\partial z}\right) = U_z + Ad\exp(B)(U)$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

for
$$U:\mathbb{C}
ightarrow\mathbb{R}^m$$
 and $B\in\mathfrak{g}$ satisfying

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Primitive maps and the Toda-field

Bolton, Pedit, Woodward (1995) show that, when $K = T^m$, there exist coordinates and a frame for which

$$F^{-1}F_z = \psi\left(\frac{\partial}{\partial z}\right) = U_z + Ad\exp(B)(U)$$

for $U:\mathbb{C} \to \mathbb{R}^m$ and $B \in \mathfrak{g}$ satisfying

 $U_{z\overline{z}} = -T(U)$ (Toda equations)

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Primitive maps and the Toda-field

Bolton, Pedit, Woodward (1995) show that, when $K = T^m$, there exist coordinates and a frame for which

$$F^{-1}F_z = \psi\left(\frac{\partial}{\partial z}\right) = U_z + Ad\exp(B)(U)$$

for $U:\mathbb{C} \to \mathbb{R}^m$ and $B \in \mathfrak{g}$ satisfying

$$U_{z\overline{z}} = -T(U)$$
 (Toda equations)

where $T(U) = \sum_{i,j} (A_i e^{a_{ij} U_j})$ is given in terms of roots of $\mathfrak{g}_{\mathbb{C}}$.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Primitive maps and the Toda-field

イロト 不得 トイヨト イヨト

3

SU(3)/SO(2) is a 6-symmetric space.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Primitive maps and the Toda-field

SU(3)/SO(2) is a 6-symmetric space. The Toda field equation reduces to the Tzitzeica equation

$$u_{z\overline{z}}=e^{-2u}-e^{u}$$

For the SU(3)/SO(2) primitive map system, the Killing field equations can be turned into a recursion mapping $V_d \rightarrow V_{d+6}$.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Primitive maps and the Toda-field

SU(3)/SO(2) is a 6-symmetric space. The Toda field equation reduces to the Tzitzeica equation

$$u_{z\overline{z}}=e^{-2u}-e^{u}$$

For the SU(3)/SO(2) primitive map system, the Killing field equations can be turned into a recursion mapping $V_d \rightarrow V_{d+6}$.

There are two stages of the recursion that require a relative Poincare lemma.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Primitive maps and the Toda-field

SU(3)/SO(2) is a 6-symmetric space. The Toda field equation reduces to the Tzitzeica equation

$$u_{z\overline{z}}=e^{-2u}-e^{u}$$

For the SU(3)/SO(2) primitive map system, the Killing field equations can be turned into a recursion mapping $V_d \rightarrow V_{d+6}$.

There are two stages of the recursion that require a relative Poincare lemma. This relative Poincare lemma follows from the vanishing result $V_{2n} = 0$.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

 $\frac{\text{Structure}}{H^1}$

Previous work

The Tzitzeica equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

based loop algebra associated to $\mathfrak{g}^\mathbb{C}$

$$\mathcal{L}(\mathfrak{g}^{\mathbb{C}}) = \left\{ B_{\lambda} \in \mathfrak{g}^{\mathbb{C}}[[\lambda, \lambda^{-1}]] : \text{ if } B_{\lambda} = \sum_{n} B^{n} \lambda^{n} \text{ then } B^{0} = 0 \right\}$$

Killing fields

(日)、

э

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

based loop algebra associated to $\mathfrak{g}^\mathbb{C}$

$$\mathcal{L}(\mathfrak{g}^{\mathbb{C}}) = \left\{ B_{\lambda} \in \mathfrak{g}^{\mathbb{C}}[[\lambda, \lambda^{-1}]] : \text{ if } B_{\lambda} = \sum_{n} B^{n} \lambda^{n} \text{ then } B^{0} = 0
ight\}$$

Killing fields

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

and the twisted based loop algebra

$$\mathcal{L}^{\sigma, au}(\mathfrak{g}^{\mathbb{C}}) = \left\{ B_{\lambda} \in \mathcal{L}(\mathfrak{g}^{\mathbb{C}}): \; \sigma(B_{\overline{\lambda}^{-1}}) = B_{\lambda} \;\; au(B_{\mu\lambda}) = B_{\lambda}
ight\}$$

asociated to the k-symmetric space $(G^{\mathbb{C}}, \sigma, \tau)$.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

based loop algebra associated to $\mathfrak{g}^\mathbb{C}$

$$\mathcal{L}(\mathfrak{g}^{\mathbb{C}}) = \left\{ B_{\lambda} \in \mathfrak{g}^{\mathbb{C}}[[\lambda, \lambda^{-1}]] : \text{ if } B_{\lambda} = \sum_{n} B^{n} \lambda^{n} \text{ then } B^{0} = 0 \right\}$$

Killing fields

and the twisted based loop algebra

$$\mathcal{L}^{\sigma, au}(\mathfrak{g}^{\mathbb{C}}) = \left\{ B_{\lambda} \in \mathcal{L}(\mathfrak{g}^{\mathbb{C}}) : \ \sigma(B_{\overline{\lambda}^{-1}}) = B_{\lambda} \ \ au(B_{\mu\lambda}) = B_{\lambda}
ight\}$$

asociated to the k-symmetric space $(G^{\mathbb{C}}, \sigma, \tau)$.

Definition

A formal Killing field for the family of flat connections ψ_{λ} on the Riemann surface N is a map $B_{\lambda} : N \to \mathcal{L}^{\sigma,\tau}(\mathfrak{g}^{\mathbb{C}})$ satisfying

$$\mathrm{d}B_{\lambda} + [\psi_{\lambda}, B_{\lambda}] = 0.$$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Killing fields and infinitesimal symmetries

Burstall, Ferus, Pedit, Pinkall (1993) introduce Killing fields of Harmonic maps into symmetric spaces as a way to package infinitesimal symmetries (Jacobi fields)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Killing fields unpacked

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

The Killing field satisfies $B^{kn+j} \in \mathfrak{g}_j$.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The Killing field satisfies $B^{kn+j} \in \mathfrak{g}_j$.

The Killing field equation decomposes into

$$\partial B^{j} + [\psi'_{0}, B^{j}] + [\psi_{-1}, B^{j+1}] = 0$$

$$\bar{\partial} B^{j} + [\psi''_{0}, B^{j}] + [\psi_{1}, B^{j-1}] = 0.$$

Killing fields unpacked

イロト 不得 トイヨト イヨト

3

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Killing fields and conservation laws

イロト 不得 トイヨト イヨト

э.

Assume that K is abelian.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Killing fields and conservation laws

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

Assume that K is abelian.

Let
$$A_{-1} = \psi_{-1}\left(\frac{\partial}{\partial z}\right)$$
, $A_1 = \psi_1\left(\frac{\partial}{\partial \overline{z}}\right)$ and

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Killing fields and conservation laws

Assume that K is abelian.

Let
$$A_{-1} = \psi_{-1} \left(\frac{\partial}{\partial z} \right)$$
, $A_1 = \psi_1 \left(\frac{\partial}{\partial \overline{z}} \right)$ and

For $P: N \to \mathfrak{g}_0$ define

$$\mathcal{E}_{(\mathsf{G}^{\mathbb{C}},\sigma,\tau)}(P) = \Delta P + 4[A_{-1},[A_1,P]].$$

イロト 不得 トイヨト イヨト

э.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Killing fields and conservation laws

Assume that K is abelian.

Let
$$A_{-1} = \psi_{-1} \left(\frac{\partial}{\partial z} \right)$$
, $A_1 = \psi_1 \left(\frac{\partial}{\partial \overline{z}} \right)$ and

For $P: N \to \mathfrak{g}_0$ define

$$\mathcal{E}_{(\mathsf{G}^{\mathbb{C}},\sigma,\tau)}(P) = \Delta P + 4[A_{-1},[A_1,P]].$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

We find that $\mathcal{E}_{(\mathsf{G}^{\mathbb{C}},\sigma,\tau)}(B^{kn}) = 0$ for $B^{kn} \in \mathfrak{g}_0$.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Killing fields and conservation laws

For any pair of functions $P, Q \in \Omega^0(N, \mathfrak{g}_0)$ define

$$\varphi_{P,Q} = -\sqrt{-1}J(\kappa(P, \mathrm{d} Q) - \kappa(Q, \mathrm{d} P)) \in \Omega^1(N, \mathbb{C})$$

イロト 不得 トイヨト イヨト

э

where κ is the Killing form of $\mathfrak{g}^{\mathbb{C}}$.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Killing fields and conservation laws

For any pair of functions $P, Q \in \Omega^0(N, \mathfrak{g}_0)$ define

$$\varphi_{P,Q} = -\sqrt{-1}J(\kappa(P, \mathrm{d} Q) - \kappa(Q, \mathrm{d} P)) \in \Omega^1(N, \mathbb{C})$$

where κ is the Killing form of $\mathfrak{g}^{\mathbb{C}}$.

Lemma

The one-form $\varphi_{P,Q}$ is closed if $P, Q \in \text{ker}(\mathcal{E}_{(\mathsf{G}^{\mathbb{C}},\sigma,\tau)})$.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Killing fields and conservation laws

For any pair of functions $P, Q \in \Omega^0(N, \mathfrak{g}_0)$ define

$$\varphi_{P,Q} = -\sqrt{-1}J(\kappa(P,\mathrm{d} Q) - \kappa(Q,\mathrm{d} P)) \in \Omega^1(N,\mathbb{C})$$

where κ is the Killing form of $\mathfrak{g}^{\mathbb{C}}$.

Lemma

The one-form $\varphi_{P,Q}$ is closed if $P, Q \in \text{ker}(\mathcal{E}_{(\mathsf{G}^{\mathbb{C}},\sigma,\tau)})$.

The g_0 -components of Killing fields give rise to conservation laws for primitive maps (when $K = T^m$).

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Killing fields and conservation laws

For any pair of functions $P, Q \in \Omega^0(N, \mathfrak{g}_0)$ define

$$\varphi_{P,Q} = -\sqrt{-1}J(\kappa(P,\mathrm{d} Q) - \kappa(Q,\mathrm{d} P)) \in \Omega^1(N,\mathbb{C})$$

where κ is the Killing form of $\mathfrak{g}^{\mathbb{C}}$.

Lemma

The one-form $\varphi_{P,Q}$ is closed if $P, Q \in \text{ker}(\mathcal{E}_{(\mathsf{G}^{\mathbb{C}},\sigma,\tau)})$.

The \mathfrak{g}_0 -components of Killing fields give rise to conservation laws for primitive maps (when $K = T^m$).

Terng and Wang (2004) gave a similar formula for conservation laws of the U/K-systems using Killing field-like objects.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The recursion for $f_{uu} = \alpha f_u + \beta f$

The Recursion: Let $a^n \in V_{2n+1}$ for some $n \ge 0$.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The recursion for $f_{uu} = \alpha f_u + \beta f$

The Recursion: Let $a^n \in V_{2n+1}$ for some $n \ge 0$. Define the one-form

$$\alpha^{n} = \frac{\sqrt{-1}}{3\sqrt{2}} (a^{n}_{-1,-1} + 2u_{0}a^{n}_{-1})\zeta - \frac{\sqrt{-1}}{\sqrt{2}}e^{u}a^{n}\overline{\zeta}$$
(1)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The recursion for $f_{uu} = \alpha f_u + \beta f$

The Recursion: Let $a^n \in V_{2n+1}$ for some $n \ge 0$. Define the one-form

$$\alpha^{n} = \frac{\sqrt{-1}}{3\sqrt{2}} (a^{n}_{-1,-1} + 2u_{0}a^{n}_{-1})\zeta - \frac{\sqrt{-1}}{\sqrt{2}}e^{u}a^{n}\overline{\zeta}$$
(1)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

 $\mathrm{d}\alpha^n \equiv 0 \mod \mathrm{I}^{(\infty)}$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The recursion for $f_{uu} = \alpha f_u + \beta f$

The Recursion: Let $a^n \in V_{2n+1}$ for some $n \ge 0$. Define the one-form

$$\alpha^{n} = \frac{\sqrt{-1}}{3\sqrt{2}} (a^{n}_{-1,-1} + 2u_{0}a^{n}_{-1})\zeta - \frac{\sqrt{-1}}{\sqrt{2}}e^{u}a^{n}\overline{\zeta}$$
(1)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

 $d\alpha^n \equiv 0 \mod I^{(\infty)}$ so $[\alpha^n] \in \overline{H}^1$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The recursion for $f_{uu} = \alpha f_u + \beta f$

The Recursion: Let $a^n \in V_{2n+1}$ for some $n \ge 0$. Define the one-form

$$\alpha^{n} = \frac{\sqrt{-1}}{3\sqrt{2}} (a^{n}_{-1,-1} + 2u_{0}a^{n}_{-1})\zeta - \frac{\sqrt{-1}}{\sqrt{2}}e^{u}a^{n}\overline{\zeta}$$
(1)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

$$\mathrm{d}\alpha^n \equiv 0 \mod \mathrm{I}^{(\infty)}$$
 so $[\alpha^n] \in \overline{H}^1$

Thus it must correspond to an element of $P_{\alpha} \in V_{2n+2} = 0$.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

 $\frac{\text{Structure}}{\overline{H}^1}$

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The recursion for $f_{uu} = \alpha f_u + \beta f$

The Recursion: Let $a^n \in V_{2n+1}$ for some $n \ge 0$. Define the one-form

$$\alpha^{n} = \frac{\sqrt{-1}}{3\sqrt{2}} (a^{n}_{-1,-1} + 2u_{0}a^{n}_{-1})\zeta - \frac{\sqrt{-1}}{\sqrt{2}}e^{u}a^{n}\overline{\zeta}$$
(1)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

$$\mathrm{d} \alpha^n \equiv 0$$
 modulo $\mathrm{I}^{(\infty)}$ so $[\alpha^n] \in \overline{H}^1$

Thus it must correspond to an element of $P_{\alpha} \in V_{2n+2} = 0$. Thus $[\alpha^n] = 0$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

 $\frac{\text{Structure}}{\overline{H}^1}$

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The recursion for $f_{uu} = \alpha f_u + \beta f$

The Recursion: Let $a^n \in V_{2n+1}$ for some $n \ge 0$. Define the one-form

$$\alpha^{n} = \frac{\sqrt{-1}}{3\sqrt{2}} (a^{n}_{-1,-1} + 2u_{0}a^{n}_{-1})\zeta - \frac{\sqrt{-1}}{\sqrt{2}}e^{u}a^{n}\overline{\zeta}$$
(1)

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

$$\mathrm{d}\alpha^n\equiv 0 \,\,\mathrm{modulo}\,\,\mathrm{I}^{(\infty)}\,\,\mathrm{so}\,\,[\alpha^n]\in\overline{H}^1$$

Thus it must correspond to an element of $P_{\alpha} \in V_{2n+2} = 0$. Thus $[\alpha^n] = 0$

There exists $b^n: M^{(\infty)} \to \mathbb{C}$ of weighted-degree 2n+2

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

 $\frac{\text{Structure}}{\overline{H}^1}$

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The recursion for $f_{uu} = \alpha f_u + \beta f$

The Recursion: Let $a^n \in V_{2n+1}$ for some $n \ge 0$. Define the one-form

$$\alpha^{n} = \frac{\sqrt{-1}}{3\sqrt{2}} (a^{n}_{-1,-1} + 2u_{0}a^{n}_{-1})\zeta - \frac{\sqrt{-1}}{\sqrt{2}}e^{u}a^{n}\overline{\zeta}$$
(1)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

$$\mathrm{d}\alpha^n\equiv 0 \,\,\mathrm{modulo}\,\,\mathrm{I}^{(\infty)}\,\,\mathrm{so}\,\,[\alpha^n]\in\overline{H}^1$$

Thus it must correspond to an element of $P_{\alpha} \in V_{2n+2} = 0$. Thus $[\alpha^n] = 0$

There exists $b^n : M^{(\infty)} \to \mathbb{C}$ of weighted-degree 2n + 2 such that $db^n \equiv \alpha^n$ modulo $I^{(\infty)}$.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

 $\frac{\text{Structure}}{\overline{H}^1}$

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The recursion for $f_{uu} = \alpha f_u + \beta f$

The Recursion: Let $a^n \in V_{2n+1}$ for some $n \ge 0$. Define the one-form

$$\alpha^{n} = \frac{\sqrt{-1}}{3\sqrt{2}} (a^{n}_{-1,-1} + 2u_{0}a^{n}_{-1})\zeta - \frac{\sqrt{-1}}{\sqrt{2}}e^{u}a^{n}\overline{\zeta}$$
(1)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

$$d\alpha^n \equiv 0 \text{ modulo } I^{(\infty)} \text{ so } [\alpha^n] \in \overline{H}^1$$

Thus it must correspond to an element of $P_{\alpha} \in V_{2n+2} = 0$. Thus $[\alpha^n] = 0$

There exists $b^n : M^{(\infty)} \to \mathbb{C}$ of weighted-degree 2n + 2 such that $db^n \equiv \alpha^n$ modulo $I^{(\infty)}$.

 b^n is a polynomial in u_0, \ldots, u_{2n+1} .

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The recursion for $f_{uu} = \alpha f_u + \beta f$

Recursively construct

 $f^{n} = \sqrt{-1}e^{\frac{u}{2}}(b^{n}_{-1} - u_{0}b^{n})$ $r^{n} = \frac{1}{3\sqrt{2}}e^{-\frac{u}{2}}(f^{n}_{-1} + \frac{1}{2}u_{0}f^{n})$ $s^{n} = -\frac{1}{\sqrt{2}}e^{-\frac{u}{2}}r^{n}_{-1}.$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The recursion for $f_{uu} = \alpha f_u + \beta f$

Again, define a one-form

$$\beta^{n} = \frac{\sqrt{-1}}{3} e^{u} (s^{n}_{-1,-1} - u_{0} s^{n}_{-1}) \zeta - \sqrt{-1} e^{-u} s^{n} \overline{\zeta} \qquad (2)$$

イロト 不得 トイヨト イヨト

3

Once again, $d\beta^n \equiv 0$ modulo $I^{(\infty)}$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The recursion for $f_{uu} = \alpha f_u + \beta f$

Again, define a one-form

$$\beta^{n} = \frac{\sqrt{-1}}{3} e^{u} (s^{n}_{-1,-1} - u_{0} s^{n}_{-1}) \zeta - \sqrt{-1} e^{-u} s^{n} \overline{\zeta} \qquad (2)$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Once again, $\mathrm{d}\beta^n\equiv 0$ modulo $\mathrm{I}^{(\infty)}$

 $V_{2n+6} = 0$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The recursion for $f_{uu} = \alpha f_u + \beta f$

Again, define a one-form

$$\beta^{n} = \frac{\sqrt{-1}}{3} e^{u} (s^{n}_{-1,-1} - u_{0} s^{n}_{-1}) \zeta - \sqrt{-1} e^{-u} s^{n} \overline{\zeta} \qquad (2)$$

Once again, $d\beta^n \equiv 0$ modulo $I^{(\infty)}$

 $V_{2n+6} = 0$ implies there exists $t^n : M^{(\infty)} \to \mathbb{C}$ of weighted-degree 2n + 6 such that $dt^n \equiv \beta^n$ modulo $I^{(\infty)}$.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The recursion for $f_{uu} = \alpha f_u + \beta f$

Again, define a one-form

$$\beta^{n} = \frac{\sqrt{-1}}{3} e^{u} (s^{n}_{-1,-1} - u_{0} s^{n}_{-1}) \zeta - \sqrt{-1} e^{-u} s^{n} \overline{\zeta} \qquad (2)$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Once again, $d\beta^n \equiv 0$ modulo $I^{(\infty)}$

 $V_{2n+6} = 0$ implies there exists $t^n : M^{(\infty)} \to \mathbb{C}$ of weighted-degree 2n+6 such that $dt^n \equiv \beta^n$ modulo $I^{(\infty)}$.

 t^n is a polynomial in u_0, \ldots, u_{2n+5} .

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The recursion for $f_{uu} = \alpha f_u + \beta f$

Finally define

$$a^{n+1} = -\sqrt{-2}(t^n_{-1} + u_0 t^n) \tag{3}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The recursion for $f_{uu} = \alpha f_u + \beta f$

$$a^{n+1} = -\sqrt{-2}(t^n_{-1} + u_0 t^n) \tag{3}$$

イロト 不得 トイヨト イヨト

3

One checks that $a^{n+1} \in V_{2n+7}$

Finally define

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

The recursion for $f_{uu} = \alpha f_u + \beta f$

Finally define

$$a^{n+1} = -\sqrt{-2}(t_{-1}^n + u_0 t^n) \tag{3}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

One checks that $a^{n+1} \in V_{2n+7}$

Summary: There is a level six recursion derived from the Killing field equation; requires $V_{2n} = 0$.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Using the seeds

 $V_1 = \mathbb{C} \cdot \{u_0\}$

Generating functions

イロト 不得 トイヨト イヨト

э.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Using the seeds

$$V_1 = \mathbb{C} \cdot \{u_0\}$$

$$V_5 = \mathbb{C} \cdot \{u_4 + 5u_2u_1 - 5u_2u_0^2 - 5u_1^2u_0 + u_0^5\}$$

Generating functions

・ロト ・ 雪 ト ・ ヨ ト

æ

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Using the seeds

$$V_{1} = \mathbb{C} \cdot \{u_{0}\}$$

$$V_{5} = \mathbb{C} \cdot \{u_{4} + 5u_{2}u_{1} - 5u_{2}u_{0}^{2} - 5u_{1}^{2}u_{0} + u_{0}^{5}\}$$

$$V_{9} = \mathbb{C} \cdot \{u_{8} + \cdots\}$$

Generating functions

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

æ

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Using the seeds

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

$V_{1} = \mathbb{C} \cdot \{u_{0}\}$ $V_{5} = \mathbb{C} \cdot \{u_{4} + 5u_{2}u_{1} - 5u_{2}u_{0}^{2} - 5u_{1}^{2}u_{0} + u_{0}^{5}\}$ $V_{9} = \mathbb{C} \cdot \{u_{8} + \cdots\}$

for the order six recursion, implies that $V_{2n+1} \cong \mathbb{C}$ for $n \in \mathbb{Z}$ and $n \neq 1, -2$.

Generating functions

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Toda-field equations

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

Determine the characteristic cohomology for all Toda-field equations associated with primitive maps to *k*-symmetric spaces.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Toda-field equations

Determine the characteristic cohomology for all Toda-field equations associated with primitive maps to *k*-symmetric spaces.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Toda-field equations

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Determine the characteristic cohomology for all Toda-field equations associated with primitive maps to *k*-symmetric spaces.

We have done the cases in which K = SO(2):

1 SU(2)/SO(2)—Gauss maps of CMC surfaces in \mathbb{R}^3

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Toda-field equations

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Determine the characteristic cohomology for all Toda-field equations associated with primitive maps to *k*-symmetric spaces.

We have done the cases in which K = SO(2):

 SU(2)/SO(2)—Gauss maps of CMC surfaces in ℝ³ 2-symmetric space

Daniel Fox

Goals

- Nonlinear Poisson equation
- Characteristic Cohomology
- $\frac{\text{theorems for}}{H^1}$
- Previous work
- The Tzitzeic equation
- Primitive maps and Killing field
- Killing fields and conservation laws
- The Killing field recursion

Questions and Conjectures

Finite type solutions

Toda-field equations

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Determine the characteristic cohomology for all Toda-field equations associated with primitive maps to *k*-symmetric spaces.

- SU(2)/SO(2)—Gauss maps of CMC surfaces in ℝ³ 2-symmetric space
- 2 SO(4)/SO(2)—Minimal surfaces in \mathbb{S}^3

Daniel Fox

Goals

- Nonlinear Poisson equation
- Characteristic Cohomology
- Structure theorems for \overline{H}^1
- Previous work
- The Tzitzeic equation
- Primitive maps and Killing field
- Killing fields and conservation laws
- The Killing field recursion

Questions and Conjectures

Finite type solutions

Toda-field equations

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Determine the characteristic cohomology for all Toda-field equations associated with primitive maps to *k*-symmetric spaces.

- SU(2)/SO(2)—Gauss maps of CMC surfaces in ℝ³ 2-symmetric space
- 2 SO(4)/SO(2)—Minimal surfaces in S³
 4-symmetric space

Daniel Fox

Goals

- Nonlinear Poisson equation
- Characteristic Cohomology
- Structure theorems for \overline{H}^1
- Previous work
- The Tzitzeic equation
- Primitive maps and Killing field
- Killing fields and conservation laws
- The Killing field recursion

Questions and Conjectures

Finite type solutions

Toda-field equations

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Determine the characteristic cohomology for all Toda-field equations associated with primitive maps to *k*-symmetric spaces.

- SU(2)/SO(2)—Gauss maps of CMC surfaces in ℝ³ 2-symmetric space
- SO(4)/SO(2)—Minimal surfaces in S³
 4-symmetric space
- 3 SU(3)/SO(2)—Minimal Legendrian surfaces in S⁵

Daniel Fox

Goals

- Nonlinear Poisson equation
- Characteristic Cohomology
- Structure theorems for \overline{H}^1
- Previous work
- The Tzitzeic equation
- Primitive maps and Killing field
- Killing fields and conservation laws
- The Killing field recursion

Questions and Conjectures

Finite type solutions

Toda-field equations

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Determine the characteristic cohomology for all Toda-field equations associated with primitive maps to *k*-symmetric spaces.

- SU(2)/SO(2)—Gauss maps of CMC surfaces in ℝ³ 2-symmetric space
- 2 SO(4)/SO(2)—Minimal surfaces in S³
 4-symmetric space
- SU(3)/SO(2)—Minimal Legendrian surfaces in S⁵
 6-symmetric space

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Finite type solutions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Let $\iota : N \to (M, \mathcal{I})$ be an integral manifold of the EDS associated to the nonlinear Poisson equation.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Finite type solutions

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Let $\iota: N \to (M, \mathcal{I})$ be an integral manifold of the EDS associated to the nonlinear Poisson equation.

Let $\overline{H}^1 = \mathbb{R} \cdot \{ [\varphi_1], [\varphi_2], \ldots \}$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Finite type solutions

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Let $\iota : N \to (M, \mathcal{I})$ be an integral manifold of the EDS associated to the nonlinear Poisson equation.

Let $\overline{H}^1 = \mathbb{R} \cdot \{[\varphi_1], [\varphi_2], \ldots\}$ and let $\mathcal{H} = \mathbb{R} \cdot \{\varphi_1, \varphi_2, \ldots\}$ with φ_i in 'normal form.'

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Finite type solutions

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Let $\iota : N \to (M, \mathcal{I})$ be an integral manifold of the EDS associated to the nonlinear Poisson equation.

Let $\overline{H}^1 = \mathbb{R} \cdot \{[\varphi_1], [\varphi_2], \ldots\}$ and let $\mathcal{H} = \mathbb{R} \cdot \{\varphi_1, \varphi_2, \ldots\}$ with φ_i in 'normal form.'

Definition

The integral manifold $\iota : N \to M$ is of finite type if $\dim_{\mathbb{R}}(\iota^*(\mathcal{H})) < \infty$.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Finite type solutions

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Let $\iota : N \to (M, \mathcal{I})$ be an integral manifold of the EDS associated to the nonlinear Poisson equation.

Let $\overline{H}^1 = \mathbb{R} \cdot \{[\varphi_1], [\varphi_2], \ldots\}$ and let $\mathcal{H} = \mathbb{R} \cdot \{\varphi_1, \varphi_2, \ldots\}$ with φ_i in 'normal form.'

Definition

The integral manifold $\iota : N \to M$ is of finite type if $\dim_{\mathbb{R}}(\iota^*(\mathcal{H})) < \infty$.

This agrees with the definition of finite type given by Pinkall and Sterling.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

A linear embedding—the spectral curve?

Suppose that $\iota : \mathbb{C} \to M^{(\infty)}$ is a doubly periodic solution for the lattice $\Lambda \subset \mathbb{C}$, of finite type *n*.

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ ● の Q (2)

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

A linear embedding—the spectral curve?

Suppose that $\iota : \mathbb{C} \to M^{(\infty)}$ is a doubly periodic solution for the lattice $\Lambda \subset \mathbb{C}$, of finite type *n*.

Let $\{[\varphi_i]\}$ be a basis for \overline{H}^1

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

A linear embedding—the spectral curve?

Suppose that $\iota : \mathbb{C} \to M^{(\infty)}$ is a doubly periodic solution for the lattice $\Lambda \subset \mathbb{C}$, of finite type *n*.

Let $\{[\varphi_j]\}$ be a basis for \overline{H}^1 such that the generating function P_j of φ_j satisfies $P_j = u_{j-1} + \cdots$ for $j \ge 1$.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing fields

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

A linear embedding—the spectral curve?

Suppose that $\iota : \mathbb{C} \to M^{(\infty)}$ is a doubly periodic solution for the lattice $\Lambda \subset \mathbb{C}$, of finite type *n*.

Let $\{[\varphi_j]\}$ be a basis for \overline{H}^1 such that the generating function P_j of φ_j satisfies $P_j = u_{j-1} + \cdots$ for $j \ge 1$. Let $\overline{H}^1_n := \{[\varphi_j] \in \overline{H}^1 \mid j \le n\} \cong \mathbb{R}^{2n}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

A linear embedding—the spectral curve?

Suppose that $\iota : \mathbb{C} \to M^{(\infty)}$ is a doubly periodic solution for the lattice $\Lambda \subset \mathbb{C}$, of finite type *n*.

Let $\{[\varphi_j]\}$ be a basis for \overline{H}^1 such that the generating function P_j of φ_j satisfies $P_j = u_{j-1} + \cdots$ for $j \ge 1$. Let $\overline{H}^1_n := \{[\varphi_j] \in \overline{H}^1 \mid j \le n\} \cong \mathbb{R}^{2n}$

$$\iota^*: \overline{H}^1_n \to H^1(\mathbb{C}/\Lambda, \mathbb{R})$$

 $\mathbb{R}^{2n} \to \mathbb{R}^2$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

A linear embedding—the spectral curve?

Suppose that $\iota : \mathbb{C} \to M^{(\infty)}$ is a doubly periodic solution for the lattice $\Lambda \subset \mathbb{C}$, of finite type *n*.

Let $\{[\varphi_j]\}$ be a basis for \overline{H}^1 such that the generating function P_j of φ_j satisfies $P_j = u_{j-1} + \cdots$ for $j \ge 1$. Let $\overline{H}^1_n := \{[\varphi_j] \in \overline{H}^1 \mid j \le n\} \cong \mathbb{R}^{2n}$

$$egin{aligned} & t^*: & ar{H}_n^1 o H^1(\mathbb{C}/\Lambda,\mathbb{R}) \ & \mathbb{R}^{2n} o \mathbb{R}^2 \end{aligned}$$

$$\hat{\iota^*}: H_1(\mathbb{C}/\Lambda, \mathbb{R}) \to (\bar{H}^1_n)^*$$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

A linear embedding—the spectral curve?

Suppose that $\iota : \mathbb{C} \to M^{(\infty)}$ is a doubly periodic solution for the lattice $\Lambda \subset \mathbb{C}$, of finite type *n*.

Let $\{[\varphi_j]\}$ be a basis for \overline{H}^1 such that the generating function P_j of φ_j satisfies $P_j = u_{j-1} + \cdots$ for $j \ge 1$. Let $\overline{H}^1_n := \{[\varphi_j] \in \overline{H}^1 \mid j \le n\} \cong \mathbb{R}^{2n}$

$$\mathbb{R}^*: \overline{H}^1_n o H^1(\mathbb{C}/\Lambda, \mathbb{R})$$
 $\mathbb{R}^{2n} o \mathbb{R}^2$

$$\hat{\iota^*}: H_1(\mathbb{C}/\Lambda, \mathbb{R}) \to (\bar{H}^1_n)^*$$

The angles determining this linear embedding should contain geometric information.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

A linear embedding—the spectral curve?

Conjecture

 $\hat{\iota^*}: H_1(\mathbb{C}/\Lambda, \mathbb{R}) o (\bar{H}^1_n)^*$ descends to a map

 $\hat{\iota^*}: H_1(\mathbb{C}/\Lambda,\mathbb{R})/\Lambda^* \to \mathbb{R}^{2n}/\Gamma \subset Jac(X_u)$

where $\Gamma \subset \mathbb{R}^{2n}$ is a lattice of real rank 2n,

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

A linear embedding—the spectral curve?

Conjecture

 $\hat{\iota^*}: H_1(\mathbb{C}/\Lambda,\mathbb{R}) o (\bar{H}^1_n)^*$ descends to a map

 $\hat{\iota^*}: H_1(\mathbb{C}/\Lambda,\mathbb{R})/\Lambda^* \to \mathbb{R}^{2n}/\Gamma \subset Jac(X_u)$

where $\Gamma \subset \mathbb{R}^{2n}$ is a lattice of real rank 2n,

and X_u is the spectral curve associated to the solution $u(z, \overline{z})$ of the non-linear Poisson equation.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeic equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

A linear embedding—the spectral curve?

Conjecture

 $\hat{\iota^*}: H_1(\mathbb{C}/\Lambda,\mathbb{R}) o (\bar{H}^1_n)^*$ descends to a map

 $\hat{\iota^*}: H_1(\mathbb{C}/\Lambda,\mathbb{R})/\Lambda^* \to \mathbb{R}^{2n}/\Gamma \subset Jac(X_u)$

where $\Gamma \subset \mathbb{R}^{2n}$ is a lattice of real rank 2n,

and X_u is the spectral curve associated to the solution $u(z, \overline{z})$ of the non-linear Poisson equation.

Idea: Conservation laws define an extended Abel-Jacobi map

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Global approach

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Global conservation laws for minimal surfaces $N \to S^3$ might lead to a maximally linear embedding

$$N
ightarrow Jac(N) \hookrightarrow T^{2n}$$

even if N is a compact Riemann surface with genus> 1, thus extending the spectral curve type construction to higher genus domains.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Global approach

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Global conservation laws for minimal surfaces $N \to \mathbb{S}^3$ might lead to a maximally linear embedding

$$N
ightarrow Jac(N) \hookrightarrow T^{2n}$$

even if N is a compact Riemann surface with genus> 1, thus extending the spectral curve type construction to higher genus domains.

Likely to require:

$$ilde{N}
ightarrow extsf{Jac}(ilde{N}) \hookrightarrow extsf{T}^{2n}$$

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Global approach

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

Global conservation laws for minimal surfaces $N \to S^3$ might lead to a maximally linear embedding

$$N
ightarrow Jac(N) \hookrightarrow T^{2n}$$

even if N is a compact Riemann surface with genus> 1, thus extending the spectral curve type construction to higher genus domains.

Likely to require:

$$\tilde{N} \to Jac(\tilde{N}) \hookrightarrow T^{2n}$$

where $\tilde{N} \to N$ branched cover.

Daniel Fox

Goals

Nonlinear Poisson equation

Characteristic Cohomology

Structure theorems for \overline{H}^1

Previous work

The Tzitzeica equation

Primitive maps and Killing field

Killing fields and conservation laws

The Killing field recursion

Questions and Conjectures

Finite type solutions

Global conservation laws for minimal surfaces $N \to \mathbb{S}^3$ might lead to a maximally linear embedding

$$N
ightarrow Jac(N) \hookrightarrow T^{2n}$$

Global approach

even if N is a compact Riemann surface with genus> 1, thus extending the spectral curve type construction to higher genus domains.

Likely to require:

$$\tilde{N} \to Jac(\tilde{N}) \hookrightarrow T^{2n}$$

where $\tilde{N} \rightarrow N$ branched cover.

Pedit has suggested the same possibility based on the multiplier spectral curve.