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The method of moving frames grew out of Felix Klein’s
Erlangen program, which proposed that the study of geometry
is really about the study of invariants of geometric objects
under group actions. Examples include:

• Geometry of submanifolds of Rn under the action of the
Euclidean group consisting of rotations, reflections, and
translations;

• Geometry of submanifolds of Rn under other group actions
(e.g., affine, conformal, projective);

• Geometry of submanifolds of other homogeneous spaces
G/H (e.g., Sn,Hn,Pn) under the action of G.



Associated to each object of interest is a collection of invariants
which are preserved by the group action. Familiar examples of
invariants under the Euclidean group include:

• Curvature and torsion for a unit-speed curve in R3;
• Gauss and mean curvatures for a surface in R3.



Invariants provide a necessary condition for equivalence: two
objects cannot be equivalent under the group action unless their
invariants agree.

The ultimate goal is to find a complete set of invariants for the
objects of interest under the group action. If a complete set of
invariants can be found, then they provide a necessary and
sufficient condition for equivalence: two objects are equivalent
under the group action if and only if their invariants agree.



The method of moving frames was introduced by Élie Cartan in
order to address this problem. In this method, a principal
bundle B (called a frame bundle) is associated to each
n-dimensional object M under consideration; each fiber of the
bundle

π : B →M

is isomorphic to a fixed Lie group G representing the
appropriate geometry.

Each local section
σ : M → B

of the a frame bundle represents a choice of a local framing on
M . Generally, for each x ∈M , σ(x) is a framing of the tangent
space TxM which is somehow adapted to the geometry of M .

The fiber group G is a subgroup of GL(n), chosen so that the
action of G preserves the set of adapted frames.
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Then the equivalence problem becomes:

Given principal bundles B1, B2 over manifolds M1,M2,
respectively, when does there exist a diffeomorphism
Φ : M1 →M2 such that

Φ∗(B1) = B2?

Under certain conditions (but not always!), Cartan’s theory can
give a complete answer to this question.



Example: Riemannian surfaces. To any Riemannian
surface M , we can associate the orthonormal frame bundle
F(M), whose fiber at each point x ∈M consists of all
orthonormal frames f = (e1, e2) for the tangent space TxM .
F(M) is a principal bundle with fiber group O(2).

Given two Riemannian surfaces M1,M2 and an isometry

Φ : M1 →M2,

Φ∗ acts on orthonormal frames in the obvious way: if
f = (e1, e2) is an orthonormal frame based at x ∈M1, then
Φ∗(f) is the frame

Φ∗(f) = (Φ∗(e1),Φ∗(e2))

based at the point Φ(x) ∈M2.
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Moreover, a diffeomorphism Φ : M1 →M2 is an isometry if and
only if

Φ∗(F(M1)) = F(M2).

So the equivalence problem,

“When are two Riemannian surfaces M1,M2 isometric?”

can be reformulated as,

“When does there exist a diffeomorphism Φ : M1 →M2 such
that

Φ∗(F(M1)) = F(M2)?”



A frame bundle π : B →M carries a canonical vector-valued
1-form ω, defined by the property that for any (x, f) ∈ B and
any v ∈ T(x,f)B,

ω(v) = π∗(v) ∈ TxM.

If f = (e1, . . . , en) is a framing for the tangent space TxM , then
ω can be written as

ω = ei ωi,

where ω1, . . . , ωn are scalar-valued 1-forms on B. These are
called the dual forms (also known as the solder forms) on B;
they have the property that for any local section σ : M → B,
the pullbacks

ω̄i = σ∗ωi

form a local coframing on M which is dual to the local framing
on M defined by σ.
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The dual forms are also semi-basic for the projection
π : B →M . This means that for any v ∈ T(x,f)B which is
tangent to the fiber Bx over the point x ∈ X, we have

ωi(v) = 0

for i = 1, . . . , n.



Theorem . Let B1, B2 be principal bundles over manifolds
M1, M2, respectively, with canonical 1-forms ω, Ω. Then there
exists a diffeomorphism Φ : M1 →M2 such that

Φ∗(B1) = B2

if and only if there exists a diffeomorphism

Φ(1) : B1 → B2

such that (
Φ(1)

)∗
Ω = ω.



Invariants for the equivalence problem on a principal bundle
B →M appear in the structure equations for the dual forms,
which express the exterior derivatives of the dual forms as

dωi = αij ∧ ωj + T ijkω
j ∧ ωk,

where the matrix
α = [αij ]

is a g-valued 1-form and the T ijk are functions on B, called
torsion functions.



The method of equivalence proceeds by using the group action
to normalize the torsion functions as much as possible; this
results in a reduction of the structure group to a smaller group,
which then introduces additional torsion functions, and so on.

Ideally, this process leads to a reduced frame bundle whose fiber
group is the trivial group G = (e). In this case, the frame
bundle is called an (e)-structure on M , and the torsion
functions in the structure equations, together with their
derivatives up to some fixed order, provide a complete set of
invariants for the equivalence problem.
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The method of equivalence can be applied to a wide variety of
problems in differential equations as well as geometry; in
particular, it can be used to compute invariants of systems of
differential equations under various types of coordinate
transformations.

These invariants can be used to address questions such as:
“When is a given PDE system equivalent to a linear system
under an appropriate change of variables?”

In this talk we will see some examples arising in control theory,
which may be viewed as the study of underdetermined ODE
systems of the form

ẋ = f(x,u).
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Equivalence for oriented Riemannian surfaces

Given an oriented Riemannian surface M , let F+(M) denote
the oriented orthonormal frame bundle of M . F+(M) is a
principal bundle over M with fiber SO(2).

Remark: F+(M) may also be thought of as the unit circle
bundle of M , via the identification

(e1, e2)↔ e1.
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The dual forms (ω1, ω2) on F+(M) are characterized by the
conditions that:

• ω1, ω2 are semi-basic for the projection π : F+(M)→M .
• For any section σ : M → F+(M), the pullbacks ω̄i = σ∗(ωi)

to M satisfy
ω̄i(ej(x)) = δij ;

i.e., ωi measures the component of a tangent vector to M
in the ei direction.

• g = (ω1)2 + (ω2)2.



Furthermore, there exists a unique 1-form α on F+(M) which is
linearly independent from ω1, ω2, and satisfies

dω1 = −α ∧ ω2 (1)

dω2 = α ∧ ω1.

α is called the connection form on F+(M); it is the Levi-Civita
connection for the Riemannian metric on M .

It has the further property that

dα = K ω1 ∧ ω2, (2)

where K is the Gauss curvature of the Riemannian metric on
M .



Together, equations (1) and (2) form the structure equations for
the canonical coframing (ω1, ω2, α) on F+(M).

Cartan’s general theory implies that the Gauss curvature K of
M , together with its covariant derivatives K1,K2, defined by
the condition

dK = K1 ω
1 +K2 ω

2,

form a complete set of local invariants for the Riemannian
metric on M .



Subtle point: The equivalence problem begins by considering
the bundle F+(M) of adapted frames over the surface M . The
algorithm leads us to the canonical coframing (ω1, ω2, α), which
is defined upstairs on F+(M), rather than on M .

Technically, the frame bundle F+(M)→M has been replaced
by a new frame bundle

F (1)
+ (M)→ F+(M),

called the prolongation of F+(M)→M , with the old frame
bundle as the new base manifold. In this case, the structure
group of the new frame bundle is the identity G = (e), and so

F (1)
+ (M) ∼= F+(M).



Static equivalence for kinematic control systems

A kinematic control system may be described in local
coordinates by an underdetermined system of ordinary
differential equations

ẋ = f(x,u), (3)

where x ∈ Rn represents the state of the system and u ∈ Rs

represents the controls. More generally, x and u may take
values in an n-dimensional manifold X and an s-dimensional
manifold U , respectively.

The system is controllable if, given any two states x1,x2, there
exists a solution curve of (3) connecting x1 to x2. Such a
solution curve is called an admissible path in X.



Remark: The adjective “kinematic” refers to the fact that the
control variables are used to control the first derivatives of the
state variables. A dynamic control system is one in which the
control variables are used to control the second derivatives of
the state variables; this is commonly the case in control of
mechanical systems, where controls take the form of external
forces.



The most commonly considered equivalence problem for control
systems is that of static (or feedback) equivalence. Two control
systems

ẋ = f(x,u), (4)
ẏ = g(y,v) (5)

on state spaces X,Y , respectively, are called static equivalent if
there exists a diffeomorphism

Φ : X → Y

such that for every solution curve x(t) of (4), the curve

y(t) = Φ(x(t))

is a solution curve of (5), and vice-versa.



Geometric interpretation: The system

ẋ = f(x,u)

defines a submanifold Σ of TX consisting of all admissible
values for ẋ: for each x ∈ X, the fiber Σx is defined by

Σx = {f(x,u) |u ∈ U}.



Static equivalence for the two systems (4), (5), represented by
submanifolds

Σ1 ⊂ TX, Σ2 ⊂ TY,

respectively, is equivalent to the condition that there exists a
diffeomorphism

Φ : X → Y

such that
Φ∗(Σ1) = Σ2.



Control-affine and control-linear systems

The system (3) is called control-affine if f(x,u) is affine linear
in the control variables; in this case (3) takes the form

ẋ = f0(x) +
s∑
i=1

fi(x)ui. (6)

The vector field f0(x) is called the drift vector field; it
determines the dynamics of the system in the absence of
controls.

Fact: The first prolongation of any control system is
control-affine.
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ẋ = f0(x) +
s∑
i=1

fi(x)ui. (6)

The vector field f0(x) is called the drift vector field; it
determines the dynamics of the system in the absence of
controls.

Fact: The first prolongation of any control system is
control-affine.



A system for which f0(x) ≡ 0 is called a driftless system; we will
also refer to such a system as control-linear. In this case we can
write (6) as

ẋ = A(x)u, (7)

where A(x) is an n× s matrix.

If A(x) has constant rank s, then the associated submanifold
Σ ⊂ TX is a rank s (linear) distribution D on X, and we can
regard the variables (x,u) as local coordinates on the
distribution (X,D).



By a theorem of Chow, the system (7) is controllable if and
only if the distribution D on X is bracket-generating, i.e., if the
iterated brackets of vector fields contained in D span the entire
tangent space at each point x ∈ X.

So the static equivalence problem for controllable, control-linear
kinematic systems may be reformulated as an equivalence
problem for bracket-generating distributions (X,D) under the
group of diffeomorphisms of the base manifold X.



Geometry of linear distributions in low dimensions

Associated to a bracket-generating distribution D is a flag of
distributions

D = D1 ⊂ D2 ⊂ · · · ⊂ Dr = TX,

called the derived flag of D, defined by

Di+1 = Di + [D,Di], i ≥ 1.

If all the Di have constant rank, we say that D has constant
type. The growth vector of a constant type distribution D is the
list of integers

(rank(D1), . . . , rank(Dr)).



The classical theorems of Frobenius, Pfaff, and Engel imply
that for n ≤ 4, distributions of constant type are classified up to
local equivalence by their growth vectors.

For instance, the generic rank 2 distribution D on a 4-manifold
X has growth vector (2, 3, 4), and Engel’s theorem implies that
every point x ∈ X has a neighborhood on which there exist
local coordinates (x1, x2, x3, x4) such that

D =
{

∂

∂x1
+ x3 ∂

∂x2
+ x4 ∂

∂x3
,

∂

∂x4

}
.

A 4-manifold X together with a rank 2 distribution D of this
type is called an Engel manifold.



Beginning with n = 5 and s = 2, local invariants depending on
arbitrary functions appear: Cartan’s famous paper, “Les
systèmes de Pfaff, à cinq variables et les équations aux dérivées
partielles du second ordre,” describes local invariants of rank 2
distributions on 5-manifolds with growth vector (2, 3, 5).

More recently, Bryant has described local invariants of rank 3
distributions on 6-manifolds with growth vector (3, 6), and
Doubrov and Zelenko have given a fairly comprehensive
treatment of maximally nonholonomic distributions of ranks 2
and 3 on manifolds of arbitrary dimension.



Things are more interesting in low dimensions if we consider the
problem of optimal control: given a distribution (X,D)
representing a system of the form (7), what is the most efficient
horizontal path between two given points in X? In order to
answer this question, we must have some measure of the energy
required to move in the state space.

Typically, this is specified by a first-order Lagrangian functional
L: for any horizontal curve γ : [a, b]→ X, we define the action
integral

L(γ) =
∫
γ
L(x, ẋ) dx =

∫
γ
L̄(x,u) dx,

where we set L̄(x,u) = L(x, A(x)u).



Often the Lagrangian is given by the square root of a smoothly
varying, positive-definite inner product on each subspace Dx;
i.e.,

L̄(x,u) =
√
gij(x)uiuj .

In this case, the Lagrangian defines a sub-Riemannian metric g
on D (i.e., a Riemannian metric on each subspace Dx ⊂ TxX).
The triple (X,D, g) is called a sub-Riemannian manifold.

Horizontal paths which minimize the action integral are the
geodesics of the sub-Riemannian metric.



Equivalence for sub-Riemannian contact 3-manifolds
(Hughen)

A contact 3-manifold is a 3-manifold X equipped with a rank 2
distribution D of constant type, with growth vector (2, 3); such
a distribution is called a contact distribution on X.

Pfaff’s theorem implies that every point x of a contact
3-manifold X has a neighborhood on which there exist local
coordinates (x1, x2, x3) such that

D =
{

∂

∂x1
+ x3 ∂

∂x2
,

∂

∂x3

}
.



Let (X,D, g) be an oriented sub-Riemannian structure on a
contact 3-manifold (X,D). Consider the bundle F0 → X of
adapted frames for the structure (X,D, g), whose fiber over each
point x ∈ X consists of all frames (e1, e2, e3) for TxX with the
properties that:

• Dx = span(e1, e2);
• (e1, e2) form an oriented, orthonormal frame for the metric
g on Dx.



The method of equivalence leads to a reduction of F0 to:

• an SO(2)-bundle Σ→ X, which may be thought of as the
“unit circle bundle” for g via the identification

(e1, e2, e3)↔ e1;

• a canonical coframing (ω1, ω2, ω3, α) on Σ that satisfies the
structure equations:

dω1 = −α ∧ ω2 +A1 ω
2 ∧ ω3 +A2 ω

3 ∧ ω1

dω2 = α ∧ ω1 +A2 ω
2 ∧ ω3 −A1 ω

3 ∧ ω1 (8)

dω3 = ω1 ∧ ω2

dα = S1 ω
2 ∧ ω3 + S2 ω

3 ∧ ω1 +K ω1 ∧ ω2.



Differentiating these equations shows that S1, S2 may be
expressed in terms of the covariant derivatives of A1 and A2;
therefore, the functions A1, A2,K, together with their covariant
derivatives, form a complete set of local invariants for the
sub-Riemannian structure (X,D, g) under the group of
diffeomorphisms of the base manifold X.



Now consider: What if the natural energy measure on
horizontal curves is not given by a quadratic form? It is not
difficult to imagine examples where the dependence of L̄ on u
gets quite complicated as u changes direction; some natural
Lagrangians might not even satisfy the symmetry condition

L̄(x,−u) = L̄(x,u).

This leads us to generalize the notion of a sub-Riemannian
metric on (X,D) by replacing the Riemannian metric on each
subspace Dx ⊂ TxX with a Finsler metric.



Definition: A Finsler metric on a manifold M is a function

F : TM → [0,∞)

with the following properties:

• Regularity: F is C∞ on the slit tangent bundle TM \ 0.
• Positive homogeneity: F (x, λy) = λF (x,y) for all λ > 0.

(Here x is any system of local coordinates on M and (x,y)
is the corresponding canonical coordinate system on TM .)

• Strong convexity: The n× n matrix[
∂2(1

2F
2)

∂yi ∂yj

]

is positive definite at every point of TM \ 0.



Replacing the Riemannian metric g on each subspace
Dx ⊂ TxX with a Finsler metric F leads to a sub-Finsler metric
on (X,D). The triple (X,D, F ) is called a sub-Finsler manifold.

The problem of finding action-minimizing paths satisfying (7) is
then equivalent to finding geodesics of the sub-Finsler manifold
(X,D, F ).



Replacing the Riemannian metric on D by a Finsler metric
allows much more general energy functionals to be considered.
The requirement that the Lagrangian be the square root of a
quadratic form is replaced by the more natural requirements
that:

• it be positive-homogeneous of degree one in u (which is
necessary if the length of an oriented curve is to be
independent of parametrization)

• it be strongly convex (which is necessary if there are to
exist locally minimizing paths in every direction).



Equivalence for sub-Finsler contact 3-manifolds (C—,
Moseley)

Let (X,D, F ) be an oriented sub-Finsler structure on a contact
3-manifold (X,D). Unlike in Riemannian geometry, there is no
notion akin to an “orthonormal frame” in Finsler geometry.

Instead of defining a principal bundle over X, we must work on
the indicatrix bundle Σ of (X,D, F ), defined by the property
that

Σ = {u ∈ D | F (u) = 1}.

Σ is a 4-dimensional manifold, and the equivalence problem
begins by defining adapted frames on Σ rather than on X.



The method of equivalence produces a canonical coframing
(η1, η2, η3, φ) on Σ that satisfies the structure equations:

dη1 = −φ ∧ η2 +A1 η
2 ∧ η3 + (A2 + 1

2IK) η3 ∧ η1 + J1 φ ∧ η3

dη2 = φ ∧ η1 + (A2 − 1
2IK) η2 ∧ η3 −A1 η

3 ∧ η1 + J2 φ ∧ η3

− I φ ∧ η2

dη3 = η1 ∧ η2 − I φ ∧ η3

dφ = S0 η
3 ∧ φ+ S1 η

2 ∧ η3 + S2 η
3 ∧ η1

− J1 φ ∧ η1 − 2J2 φ ∧ η2 +K η1 ∧ η2.

Theorem (C— -Moseley). The sub-Finsler structure
represented by the indicatrix bundle Σ is sub-Riemannian if and
only if I ≡ 0.
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Similar results have been obtained for Engel manifolds:

• Sub-Riemannian case: Moseley
• Sub-Finsler case: C—, Moseley, and Wilkens



Control-affine systems and affine distributions

For the control-affine system

ẋ = f0(x) +
s∑
i=1

fi(x)ui,

the associated submanifold Σ ⊂ TX is a rank s affine
distribution F whose fiber Fx over each point x ∈ X is defined
by

Fx = f0(x) + span{f1(x), . . . , fs(x)}.



Static equivalence for two control-affine systems

ẋ = f0(x) +
s∑
i=1

fi(x)ui, (9)

ẏ = g0(y) +
s∑
i=1

gi(y)vi (10)

on state spaces X,Y , respectively, represented by affine
distributions F1 ⊂ TX, F2 ⊂ TY , is equivalent to the condition
that there exists a diffeomorphism Φ : X → Y such that

Φ∗(F1) = F2.

In this case, we say that the affine distributions F1,F2 are affine
equivalent.



Equivalence for affine distributions under affine equivalence was
studied by Elkin, who found that functional invariants appear
in lower dimensions than for linear distributions: if F is a
generic rank 1 affine distribution on a 3-manifold X, then every
point x ∈ X has a neighborhood on which there exist local
coordinates (x1, x2, x3) such that

F =
∂

∂x1
+ span

(
x3 ∂

∂x1
+

∂

∂x2
+H

∂

∂x3

)
,

where H(x) is an arbitrary function on X with ∂H
∂x1 6= 0.



Point-affine equivalence for affine distributions (C—,
Moseley, and Wilkens)

Consider the control-affine system

ẋ = f0(x) +
s∑
i=1

fi(x)ui,

The drift vector field f0(x) may be replaced by any vector field
of the form

f0(x) +
s∑
i=1

λi(x)fi(x),

and the resulting control system will be affine equivalent to the
original system.



But in practice, there is often a preferred choice for the drift
vector field, corresponding to a zero value for some physical
control inputs. This is particularly true in optimal control,
where there is typically a specific control input whose cost
function is minimal.

This motivates the following definition:



Definition: A point-affine distribution on a manifold X is an
affine distribution F on X, together with a distinguished vector
field f0 ∈ F. Two point-affine distributions

FX = f0 + span (f1, . . . , fs) , FY = g0 + span (g1, . . . ,gs)

on manifolds X,Y (corresponding to the control-affine systems
(9) and (10), respectively) will be called point-affine equivalent
if there exists a diffeomorphism Φ : X → Y such that

Φ∗(F1) = F2

and
Φ∗(f0(x)) = g0(Φ(x)).



Under point-affine equivalence, functional invariants appear in
even lower dimension than for affine equivalence:

Theorem (C— -Moseley-Wilkens).

• If F is a generic rank 1 point-affine distribution on a
2-manifold X, then every point x ∈ X has a neighborhood
on which there exist local coordinates (x1, x2) such that

F = x2

(
∂

∂x1
+ J

∂

∂x2

)
+ span

(
∂

∂x2

)
,

where J(x) is an arbitrary function on X.



• If F is a generic rank 1 point-affine distribution on a
3-manifold X, then every point x ∈ X has a neighborhood
on which there exist local coordinates (x1, x2, x3) such that

F =
(

∂

∂x1
+ J

(
x3 ∂

∂x1
+

∂

∂x2
+H

∂

∂x3

))
+ span

(
x3 ∂

∂x1
+

∂

∂x2
+H

∂

∂x3

)
,

where H(x), J(x) are arbitrary functions on X with
∂H
∂x1 6= 0.



• If F is a generic rank 2 point-affine distribution on a
3-manifold X, then every point x ∈ X has a neighborhood
on which there exist local coordinates (x1, x2, x3) such that

F =
(

(1 + x3J3)
∂

∂x1
+ J3

∂

∂x2
− J2

∂

∂x3

)
+ span

(
x3 ∂

∂x1
+

∂

∂x2
,
∂

∂x3

)
,

where J2(x), J3(x) are arbitrary functions on X.



Work in progress: What happens when we put a metric
structure akin to sub-Riemannian or sub-Finsler geometry on a
point-affine distribution?



Dynamic equivalence for kinematic control systems

Recall that for any smooth curve x(t) in a manifold X and any
non-negative integer k, the kth prolongation of x(t) is the curve

pk(x)(t) =
(
x(t), ẋ(t), . . . ,x(k)(t)

)
in the jet space J k(X).



Two control systems

ẋ = f(x,u), (11)
ẏ = g(y,v) (12)

on state spaces X,Y , respectively, are called dynamic equivalent
if there exist integers J,K ≥ −1 and submersions

Φ : J J+1(X)→ Y, Ψ : JK+1(Y )→ X

(defined on appropriate open sets) such that:



• for any solution x(t) of (11), (Φ ◦ pJ+1)(x)(t) is a solution
to (12),

• for any solution y(t) of (12), (Ψ ◦ pK+1)(y)(t) is a solution
to (11),

• the following diagram commutes for solutions:

J J+1(X)
OO

pJ+1

Φ

$$JJJJJJJJJJJJJJJJJJJJJ
JK+1(Y )

OO

pK+1

Ψ
uuuuuuuuu

yytttttttttt

X Y
In other words, for any solutions x(t), y(t) of (11), (12),

(Ψ ◦ pK+1 ◦ Φ ◦ pJ+1) (x(t)) = x(t),

(Φ ◦ pJ+1 ◦Ψ ◦ pK+1) (y(t)) = y(t).



These maps are considerably more complicated than those that
define a static equivalence; whereas static equivalence is defined
by a diffeomorphism

y = Φ(x),

dynamic equivalence is defined by differential operators:

y = Φ(x, ẋ, . . . ,x(J+1))

x = Ψ(y, ẏ, . . . ,y(K+1)).



The control systems (11) and (12) define submanifolds

Σ1 ⊂ TX, Σ2 ⊂ TY,

with local coordinates (x,u) on Σ1 and (y,v) on Σ2. These, in
turn, define prolonged submanifolds

ΣJ
1 ⊂ J J+1(X), ΣK

2 ⊂ JK+1(Y ),

with local coordinates

(x,u, u̇, . . . ,u(J)), (y,v, v̇, . . . ,v(K)),

respectively. When restricted to ΣJ
1 , ΣK

2 , the maps Φ,Ψ have
the form

y = Φ(x,u, . . . ,uJ),

x = Ψ(y,v, . . . ,vK).



Example: Consider the following systems (both with
n = 3, s = 2):

Σ1 :


ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1

Σ2 :


ẏ1 = v1

ẏ2 = v2

ẏ3 = y2

These systems are not static equivalent, but they are dynamic
equivalent (with J = K = 0) via the maps

(y1, y2, y3) = Φ(x1, x2, x3, u1, u2) = (x3 − x1x2, u2, x2)

(x1, x2, x3) = Ψ(y1, y2, y3, v1, v2) =
(
−v1

y2
, y3, y1 −

y3v1

y2

)
.



It is straightforward to show that these maps extend via
prolongation to

(y1, y2, y3, v1, v2) = Φ(1)(x1, x2, x3, u1, u2, u̇1, u̇2)

= (x3 − x1x2, u2, x2, −x1u2, u̇2)

(x1, x2, x3, u1, u1) = Ψ(1)(y1, y2, y3, v1, v2, v̇1, v̇2)

=
(
−v1

y2
, y3, y1 −

y3v1

y2
,
v1v2 − y2v̇1

y2
2

, y2

)
.



Check that this is, in fact, a dynamic equivalence between the
given systems:

ẏ1 =
d
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= u2
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ẏ3 = ẋ2

= u2

= y2 X



Check that this is, in fact, a dynamic equivalence between the
given systems:
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d

dt
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−v1

y2

)
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y3
2

= u1 X

ẋ2 = ẏ3

= y2

= u2 X

ẋ3 =
d

dt

(
y1 −

y3v1

y2

)
= v1 −
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y2
2

= y3
v1v2 − y2v̇1

y2
2
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2
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ẋ3 =
d

dt

(
y1 −

y3v1

y2

)
= v1 −

y2(y2v1 + y3v̇1)− y3v1v2

y2
2

= y3
v1v2 − y2v̇1

y2
2

= x2u1 X
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ẋ2 = ẏ3
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It is straightforward to check that the maps Φ,Ψ act as inverses
of each other on solutions.



This example can be constructed by the following method, due
to Pomet:

Start with the system

ẋ1 = u1

ẋ2 = u2

ẋ3 = x2u1.



Construct a partial prolongation of this system to a system with
4 states and 2 controls: let

z1 = x1, z2 = x2, z3 = x3, z4 = u2

be the new state variables, and

w1 = u1, w2 = u̇2

the new control variables.



The prolonged system is the control-affine system
ż1

ż2

ż3

ż4

 =


0
z4

0
0

+


1
0
z2

0

w1 +


0
0
0
1

w2. (13)

By the nature of the partial prolongation, the control vector
field associated to w2 is 

0
0
0
1

 .



Now perform a static transformation among the new state
variables in order to arrange that the control vector field
associated to w1, 

1
0
z2

0

 ,
is transformed to 

0
0
0
1

 .



This can be accomplished by the static transformation

(z̃1, z̃2, z̃3, z̃4) = ( z3 − z1z2, z2, z4, z1),

which transforms the system (13) to:
˙̃z1
˙̃z2
˙̃z3
˙̃z4

 =


ż3 − z1ż2 − z2ż1

ż2

ż4

ż1



=


−z̃3z̃4

z̃3

0
0

+


0
0
0
1

w1 +


0
0
1
0

w2.



This system is necessarily a partial prolongation of a 3-state
system—in this case, the system with state variables

ỹ1 = z̃1, ỹ2 = z̃3, ỹ3 = z̃2

and control variables

ṽ1 = z̃4, ṽ2 = w2,

given by

˙̃y1 = −ỹ2ṽ1

˙̃y2 = ṽ2

˙̃y3 = ỹ2.



Setting

yi = ỹi, i = 1, 2, 3
v1 = −ỹ2ṽ1,

v2 = ṽ2

transforms this to the system

ẏ1 = v1

ẏ2 = v2

ẏ3 = y2.



Each step in this transformation process is a dynamic
equivalence; therefore the two systems are dynamic equivalent.

The explicit formulas for the maps Φ,Ψ follow directly from
this construction.

Open question: Can every dynamic equivalence be expressed
in a similar fashion as a combination of partial prolongations,
static equivalences, and deprolongations?
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equivalence; therefore the two systems are dynamic equivalent.

The explicit formulas for the maps Φ,Ψ follow directly from
this construction.

Open question: Can every dynamic equivalence be expressed
in a similar fashion as a combination of partial prolongations,
static equivalences, and deprolongations?



Known results on dynamic equivalence:

• The number of control variables is an invariant of dynamic
equivalence.

• The number of state variables, however, is not invariant;
for instance, any control system is dynamic equivalent to
any prolongation or partial prolongation of itself.

• (Pomet) If Σ1, Σ2 are dynamic equivalent systems on state
spaces X,Y of dimensions m,n, respectively, then on
appropriate open sets:
• If m > n, then for each x ∈ X, (Σ1)x is a ruled submanifold

of TxX.
• If m = n, then either Σ1 and Σ2 are both ruled, or Σ1 and

Σ2 are static equivalent.
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Known results on dynamic equivalence:

• The number of control variables is an invariant of dynamic
equivalence.

• The number of state variables, however, is not invariant;
for instance, any control system is dynamic equivalent to
any prolongation or partial prolongation of itself.

• (Pomet) If Σ1, Σ2 are dynamic equivalent systems on state
spaces X,Y of dimensions m,n, respectively, then on
appropriate open sets:
• If m > n, then for each x ∈ X, (Σ1)x is a ruled submanifold

of TxX.
• If m = n, then either Σ1 and Σ2 are both ruled, or Σ1 and

Σ2 are static equivalent.



Problem: How to approach the question of equivalence when
the maps Φ,Ψ are submersions rather than diffeomorphisms?

Solution (Stackpole): Pass to the infinite prolongations Σ∞1 ,
Σ∞2 . Then the prolonged maps

Φ(∞) : Σ∞1 → Σ∞2 , Ψ(∞) : Σ∞2 → Σ∞1

become diffeomorphisms, and

Ψ(∞) =
(

Φ(∞)
)−1

.
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It turns out to be most convenient to work on the manifolds

Σ̃k
i = Σk

i × R,

with coordinate t on the R factor, for i = 1, 2.

For each k ≥ 1, Σ̃k
1 is a rank s affine distribution on Σ̃k−1

1 ,
spanned by the vector fields ∂

∂t
+

n∑
j=1

fj(x,u)
∂

∂xj
+
k−2∑
`=0

s∑
r=1

u(`+1)
r

∂

∂u`r
+

s∑
r=1

ûkr
∂

∂uk−1
r

∣∣∣∣
ûk1, . . . , û

k
s ∈ R

}
.

In the limit as k →∞, Σ̃∞i is similarly equipped with a rank s
distribution.
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The distributions and the prolongation structures on Σ̃∞1 , Σ̃∞2
are encoded by the following coframings:

ω̄ =


ω̄−1

ω̄0

ω̄1

ω̄2

...

 =


dt

dx− f(x,u)dt
du− u̇dt
du̇− üdt

...



Ω̄ =


Ω̄−1

Ω̄0

Ω̄1

Ω̄2

...

 =


dt

dy − g(y,v)dt
dv − v̇dt
dv̇ − v̈dt

...





Any other adapted coframing ω on Σ̃∞1 has the form

ω = G−1ω̄,

where G is an invertible matrix-valued function on Σ̃∞1 of the
form

G =


1 01×n 01×s 01×s 01×s 01×s · · ·

0n×1 G0
0 0n×s 0n×s 0n×s 0n×s · · ·

0s×1 G1
0 G1

1 0s×s 0s×s 0s×s · · ·
0s×1 Gs

0 Gs
1 Gs

s 0s×s 0s×s · · ·
...

 .

(Adapted coframings Ω on Σ̃∞2 are defined similarly.)



The maps

Φ̃(∞) = Φ(∞) × Id, Ψ̃(∞) =
(

Φ̃(∞)
)−1

define a dynamic equivalence of type (J,K) if and only if for all
k ≥ 0 and any adapted coframings ω,Ω on Σ̃∞1 , Σ̃∞2 ,(

Φ̃(∞)
)∗

(Ωk) ∈ span{ω0, . . . ,ωk+J+1},(
Ψ̃(∞)

)∗
(ωk) ∈ span{Ω0, . . . ,Ωk+K+1}.

Compare with static equivalence, where the analogous
conditions are (

Φ̃(∞)
)∗

(Ωk) ∈ span{ω0, . . . ,ωk},(
Ψ̃(∞)

)∗
(ωk) ∈ span{Ω0, . . . ,Ωk}.
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Compare with static equivalence, where the analogous
conditions are (

Φ̃(∞)
)∗

(Ωk) ∈ span{ω0, . . . ,ωk},(
Ψ̃(∞)

)∗
(ωk) ∈ span{Ω0, . . . ,Ωk}.



Stackpole analyzes certain aspects of the structure of the linear
maps

(
Φ̃(∞)

)∗
,
(

Ψ̃(∞)
)∗

. Using these results, he is able to:

• give a new proof of the known result that when s = 1,
dynamic equivalence implies static equivalence;

• give a complete categorization for dynamic equivalence
with J = K = 0 in the case of control-affine systems with
n = 3, s = 2.
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This second result is based on Elkin’s classification of
control-affine systems with n = 3, s = 2 up to static
equivalence. Elkin showed that there are 5 static equivalence
classes, exemplified by the systems

ẋ1 = u1

ẋ2 = u2

ẋ3 = f(x,u),

where f(x,u) is one of the 5 functions

f(x,u) =



0
1
x2

x2u1

1 + x2u1

.



Theorem (Stackpole). The static equivalence classes
corresponding to

f = x2, f = x2u1, f = 1 + x2u1

are all dynamic equivalent with J = K = 0, while the static
equivalence classes corresponding to

f = 0, f = 1

are neither dynamic equivalent to these three nor to each other
with J = K = 0.

While this theorem does not preclude the possibility of
additional equivalences at some higher prolongation levels J , K,
it represents a significant step towards the ability to distinguish
between dynamically inequivalent systems.



Stackpole’s main technical result is that when s = 2 and
J = K = 0, the matrix for

(
Φ̃(∞)

)∗
factors as(

Φ̃(∞)
)∗

= gSG,

where g,G have the form of (possibly time-varying) static
equivalences and S is a specific unitary matrix consisting
entirely of 0’s and 1’s.



For example, when n = 3:

S =

266666666666666666666666664

1 0 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 1 0 0 0 0 0 0 · · ·
0 0 1 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 1 0 0 0 0 0 0 0 0 · · ·
0 1 0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 1 0 0 0 0 · · ·
0 0 0 0 1 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 1 0 0 · · ·
0 0 0 0 0 0 1 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 0 1 · · ·
0 0 0 0 0 0 0 0 1 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 0 0 · · ·

...

377777777777777777777777775



This makes it possible to examine how the invariants of a given
system with respect to static equivalence may be transformed
by a dynamic equivalence, thereby introducing necessary
conditions which must be satisfied for dynamic equivalence.



This result can almost certainly be generalized for larger values
of s, J , and K; the only difficulty is that for given values of
s, J,K,there will probably be several different possibilities for
the matrix S, depending on the ranks of various submatrices of(

Φ̃(∞)
)∗

.

Open question: Can this idea be extended sufficiently to
determine whether there exists a dynamic equivalence of any
type (J,K) between two given systems?
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