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Conservation Laws

Conservation Laws

1

F −→ Γ(TMm)

{Solutions PDE} 7→ {divergence-free tangent vector fields}

2 (Mm, g) Riemannian manifold. Then divX .Volg = d(XyVolg )

F −→ Γ(∧m−1T∗Mm)

{Solutions PDE} 7→ {Closed differential (m-1)-forms}

3

F −→ Γ(∧pT∗Mm)

{Solutions PDE} 7→ {Closed differential p-forms}
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Generalized Isometric Embedding Problem

Genralized Isometric Embedding Problem (F. Hélein)

Mm?

Vng ,∇

φ ∈ Γ( ∧pT∗Mm)Vn ⊗

φd∇ = 0

Ψ ? Mm×RNn
m,p

?
Mm

Ψ(M,X ) = (M,ΨMX )

Isometric

Ψ(φ)d = 0PDE :

CL :

The ingredients of the generalized isometric embedding are :

(Vn,Mm, g ,∇, φ)p

The problem is trivial when n = 1.
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Mm?

Vng ,∇

φ ∈ Γ( ∧pT∗Mm)Vn ⊗

φd∇ = 0

Ψ ? Mm×RNn
m,p

?
Mm

Ψ(M,X ) = (M,ΨMX )

Isometric

Ψ(φ)d = 0

PDE :

CL :

The ingredients of the generalized isometric embedding are :

(Vn,Mm, g ,∇, φ)p

The problem is trivial when n = 1.

Nabil Kahouadji, Ph.D. Conservation Laws and Generalized Isometric Embeddings June 14, 2011 4 / 42



Generalized Isometric Embedding Problem

Genralized Isometric Embedding Problem (F. Hélein)
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Generalized Isometric Embedding Problem

What happens locally ?

Mm?

Vng ,∇

φ ∈ Γ(Vn ⊗ ∧pT∗Mm)

φd∇ = 0

Ψ Mm × RNn
m,p

?

Ψ(M,X ) = (M,ΨMX )

Mm

Isometric

dΨ(φ) = 0

λ, µ, ν = 1 to m

i , j , k = 1 to n A,B,C = 1 to N

a, b, c = n + 1 to N

φ = Eiφ
i . Then d∇φ = 0⇔ dφi + ηi

j ∧ φj = 0, where (ηi
j ) is the

connection 1-form of ∇ (∇Ej = ηi
j Ei ).

Ψ(Ei ) = ei . Let us complement (e1, . . . , em) to obtain an orthonormal
moving frame on RNn

m,p .Then the flat connection ω on RNn
m,p is

ωA
B = 〈eA,deB〉RNn

m,p .

dΨ(φ) = dΨ(Eiφ
i ) = d(eiφ

i ) = ei (dφi + ωi
j ∧ φj) + ea(ωa

i ∧ φi ) = 0.

Ψ∗(ωi
j ) = ηi

j and Ψ∗(ωa
i ) ∧ φi = 0
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Two Fundamental Motivations

Motivation 1 : Isometric Embedding Problem of
Riemannian manifolds

(Mm, g)
u ?

Isometric
(RN , 〈, 〉RN )

The isometric embedding problem is equivalent to the generalized
isometric embedding problem when :

(Vn,Mm, g ,∇, φ)p = (TMm,Mm, g ,∇, IdTMm)1

and this is done through
Ψ(φ) = du

Cartan–Janet :

Nash :
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Two Fundamental Motivations

Motivation 2 : Harmonic maps between Riemannian
manifolds

u : (Mm, g) −→ (N n, h) is harmonic if u is a critical point of the energy
functional

E [u] =

∫
Mm

|du|2

2
VolMm

Locally, the Euler-Lagrange equations are :

∆g ui + gαβΓi
jk

(
u(x)

) ∂uj

∂xα
∂uk

∂xβ
= 0

The identity map, constant maps, harmonic functions, parameterization of
geodesics, minimal isometric immersions, holomorphic and
anti-holomorphic maps between Kählerian manifolds, ...
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TN n, h ,∇N n

?

u∗TN ng , ∇,

du?( )d∇

d∇(?du) = 0⇔ u is harmonic

A harmonic map u produces the ingredients (u∗TN n,Mm, g ,∇, ?du)(m−1)

of the generalized isometric embedding problem.
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Two Fundamental Motivations

The Generalized Isometric Embedding Problem’s Goal

To show the existence of the analogeous of conservation laws when there
are no symmetries for a system of partial differential equations.
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Results

Results

Construction of local conservation laws by generalized isometric embedding of

vector bundles, arXiv :0804.2608 (2010), to appear in Asian J. of Math.

Theorem ((Vn,Mm, g,∇, φ)m−1 case)

Let Vn be a real analytic n-dimensional vector bundle over a real analytic
m-dimensional manifold Mm endowed with a metric g and a connection
∇ compatible with g. Given a non-vanishing covariantly closed Vn-valued
differential (m − 1)-form φ, there exists a local generalized isometric
embedding of Vn in Mm × Rn+κn

m,m−1 over Mm, where
κn

m,m−1 > (m − 1)(n − 1) such that the image of φ is a conservation law.
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Results

Results

Corollary

Let (Mm, g) be a real analytic m-dimensional Riemannian manifold, ∇ be
the Levi-Civita connectionand T be a contravariant 2-tensor with a
vanishing covariant divergence. Then there exists a local conservation law
for T on Mm × Rm+(m−1)2

.

Application : m = 4 and T the stress-energy tensor.

Γ(TMm ⊗ TMm) −→ Γ(TMm ⊗ ∧m−1T∗Mm)

T 7→ τ

divT = 0⇐⇒ d∇τ = 0
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Results

Results

Theorem ((V2,Mm, g,∇, φ)1 case)

Let V2 be a real analytic 2-dimensional vector bundle over a real analytic
m-dimensional manifold Mm endowed with a metric g and a connection
∇ compatible with g. Given a non-vanishing covariantly closed
non-degenerate V2-valued differential 1-form φ, there exists a local

generalized isometric embedding of V2 in Mm × Rn+κ2
m,1 over Mm, where

κn
m,m−1 > 1 such that the image of φ is a conservation law.
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Results

Results

Theorem ((V3,M4, g,∇, φ)2 ASD case)

Let M4 be an oriented real analytic 4-dimensional manifold endowed with
a metric (actually a conformal structure is enough). Consider a real
analytic vector bundle V3 of rank 3 over M4, endowed with a Riemannian
metric g , g-compatible connection ∇, and a anti-self-dual covariantly
closed V3-valued differential 2-form φ. There exists then a local

generalized isometric embedding Ψ of V3 into M4 × R3+κ3
4,2,ASD , where

κ3
4,2,ASD > 4, such that Ψ(φ) is a local conservation law.
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Solving Strategy

Solving Strategy

Ψ∗(ωi
j ) = ηi

j and Ψ∗(ωa
i ) ∧ φi = 0

On the product manifold

Σn
m,p =Mm ×

SO(n + κn
m,p)

SO(κn
m,p)

the naive EDS is
In

m,p = {ωi
j − ηi

j , ω
a
i ∧ φi}
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Solving Strategy

Solving Strategy

The generalized isometric embedding EDS is

In
m,p = {ωi

j − ηi
j , ω

i
a ∧ ωa

j + Ωi
j , ω

a
i ∧ φi}

On the product manifold

Σn
m,p =Mm ×

SO(n + κn
m,p)

SO(κn
m,p)

where Ω is the curvature 2-form of ∇ (Ωi
j = dηi

j + ηi
k ∧ ηk

j ).
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Solving Strategy

Solving Strategy

The standard case is (TMm,Mm, g ,∇, IdTMm)1

Generalized torsion : Θ = EiΘ
i := Ei (dφi + ηi

j ∧ φj).

Generalized Bianchi identities :Bn
m,p := Ei (Ωi

j ∧ φj) = 0.

Generalized Riemann curvature tensors :

Kn
m,p := {(Ri

j ;λµ) ∈ ∧2(Rn)⊗ ∧2(Rm)|Ωi
j ∧ φj = 0,∀i = 1 to n}.
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Solving Strategy

Solving Strategy

The prolongation process of In
m,p yields to : ωa

i = Ha
iλη

λ where
Ha

iλ ∈ Wn
m,m−1 ⊗ Rn ⊗ Rm and Wn

m,p is a Euclidean space of dimension
κn

m,p, and

Generalized Cartan Identities :∑
λ = 1, . . . ,m

1 6 µ1 < · · · < µp 6 m

Ha
iλψ

i
µ1,...,µp

= 0

Generalized Gauss Map :

(Gn
m,p)i

j ;λµ : Hiλ.Hjµ − Hiµ.Hjλ = Ri
j ;λµ.
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Solving Strategy

Specialization For The Conservation Law Case : p = m− 1

Lemma

Let κn
m,m−1 > (m − 1)(n − 1). Let Hn

m,m−1(M) ⊂ Wn
m,m−1 ⊗ Rn ⊗ Rm be

the open set consisting of those elements H = (Ha
iλ) so that the vectors

{Hiλ|i = 1, . . . , n − 1 and λ = 1, . . . ,m − 1} are linearly independent as
elements of Wn

m,m−1 and satisfy the generalized Cartan identities. Then
Gn

m,m−1 : Hn
m,m−1 −→ Kn

m,m−1 is a surjective submersion.
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Perspectives

Perspectives

1 Global versions in the analytic category.

2 Local and/or global versions in the smooth category.

3 Solving the problem for p = 1, . . . ,m − 2.

4 Understanding possible geometric obstructions.

5 Studying the rigidity of the generalized isometric immersions.

6 Studying the problem for a structural group G ⊂ O(n).
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End

Thank you very much for your attention

Merci infiniment de votre attention
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