Conservation Laws and Generalized Isometric Embeddings

Nabil Kahouadji, Ph.D.

(McGill University)

Workshop on Moving Frames in Geometry Centre de Recherches Mathématiques Montréal, Canada

June 14, 2011

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011

b. 4 To b

1 / 42

Outline

Outline

 Nabil Kahouadji, Ph.D.
 Conservation Laws and Generalized Isometric Embeddings
 June 14, 2011
 2 / 42

・ロト ・四ト ・ヨト ・ヨト 三日

Outline

Outline

I. Conservation Laws

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011

イロト イ部ト イヨト イヨト 二日

2 / 42

Outline

Outline

- I. Conservation Laws
- II. Generalized Isometric Embedding Problem

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 2 / 42

Outline

Outline

- I. Conservation Laws
- II. Generalized Isometric Embedding Problem
- III. Two Fundamental Motivations

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 2 / 42

Outline

Outline

- I. Conservation Laws
- II. Generalized Isometric Embedding Problem
- III. Two Fundamental Motivations
- IV. Results

Outline

Outline

- I. Conservation Laws
- II. Generalized Isometric Embedding Problem
- III. Two Fundamental Motivations
- IV. Results
- V. Solving Strategy

- 4 同下 4 三下 4 三下

Outline

Outline

- I. Conservation Laws
- II. Generalized Isometric Embedding Problem
- III. Two Fundamental Motivations
- IV. Results
- V. Solving Strategy
- VI. Perspectives

Nabil Kahouadji, Ph.D.

- 4 目 ト 4 日 ト

Conservation Laws

Conservation Laws

Nabil Kahouadji, Ph.D. Conserva

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 3 / 42

イロト イ部ト イヨト イヨト 二日

Conservation Laws

Conservation Laws

1

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

 \mathcal{F}

June 14, 2011 3 / 42

イロト イ部ト イヨト イヨト 二日

Conservation Laws

Conservation Laws

1

 $\mathcal{F} \longrightarrow \Gamma(\mathrm{T}\mathcal{M}^m)$

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 3 / 42

Conservation Laws

Conservation Laws

1

$\mathcal{F} \longrightarrow \Gamma(\mathrm{T}\mathcal{M}^m)$

 $\{\mathsf{Solutions}\ \mathsf{PDE}\} \mapsto \{\mathsf{divergence-free}\ \mathsf{tangent}\ \mathsf{vector}\ \mathsf{fields}\}$

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 3 / 42

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

1

Conservation Laws

Conservation Laws

$\mathcal{F} \longrightarrow \Gamma(\mathrm{T}\mathcal{M}^m)$

 $\{\mathsf{Solutions}\ \mathsf{PDE}\} \mapsto \{\mathsf{divergence-free}\ \mathsf{tangent}\ \mathsf{vector}\ \mathsf{fields}\}$

2 (\mathcal{M}^m, g) Riemannian manifold.

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 3 / 42

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ = ● ● ●

1

Conservation Laws

Conservation Laws

$\mathcal{F} \longrightarrow \Gamma(\mathrm{T}\mathcal{M}^m)$

 $\{\mathsf{Solutions}\ \mathsf{PDE}\}\mapsto\{\mathsf{divergence-free}\ \mathsf{tangent}\ \mathsf{vector}\ \mathsf{fields}\}$

2 (\mathcal{M}^m, g) Riemannian manifold. Then $\operatorname{div} X.\operatorname{Vol}_g = \operatorname{d}(X \lrcorner \operatorname{Vol}_g)$

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 3 / 42

▲ロト ▲撮 ト ▲ 臣 ト ▲ 臣 ト ● 臣 ● のへで

1

Conservation Laws

Conservation Laws

$\mathcal{F} \longrightarrow \Gamma(\mathrm{T}\mathcal{M}^m)$

 $\{\mathsf{Solutions}\ \mathsf{PDE}\}\mapsto\{\mathsf{divergence-free}\ \mathsf{tangent}\ \mathsf{vector}\ \mathsf{fields}\}$

2 (\mathcal{M}^m, g) Riemannian manifold. Then $\operatorname{div} X.\operatorname{Vol}_g = \operatorname{d}(X \lrcorner \operatorname{Vol}_g)$

$$\mathcal{F} \longrightarrow \Gamma(\wedge^{m-1}\mathrm{T}^*\mathcal{M}^m)$$

Nabil Kahouadji, Ph.D.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

1

Conservation Laws

Conservation Laws

$\mathcal{F} \longrightarrow \Gamma(\mathrm{T}\mathcal{M}^m)$

 $\{\mathsf{Solutions}\ \mathsf{PDE}\}\mapsto\{\mathsf{divergence-free}\ \mathsf{tangent}\ \mathsf{vector}\ \mathsf{fields}\}$

2 (\mathcal{M}^m, g) Riemannian manifold. Then $\operatorname{div} X.\operatorname{Vol}_g = \operatorname{d}(X \lrcorner \operatorname{Vol}_g)$

 $\mathcal{F} \longrightarrow \Gamma(\wedge^{m-1} \mathrm{T}^* \mathcal{M}^m)$ {Solutions PDE} \mapsto {Closed differential (m-1)-forms}

Nabil Kahouadji, Ph.D.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

0

Conservation Laws

Conservation Laws

$\mathcal{F} \longrightarrow \Gamma(\mathrm{T}\mathcal{M}^m)$

 $\{\mathsf{Solutions}\ \mathsf{PDE}\}\mapsto\{\mathsf{divergence-free}\ \mathsf{tangent}\ \mathsf{vector}\ \mathsf{fields}\}$

2 (\mathcal{M}^m, g) Riemannian manifold. Then $\operatorname{div} X.\operatorname{Vol}_g = \operatorname{d}(X \lrcorner \operatorname{Vol}_g)$

$$\mathcal{F} \longrightarrow \Gamma(\wedge^{m-1} \mathrm{T}^* \mathcal{M}^m)$$

{Solutions PDE} \mapsto {Closed differential (m-1)-forms}

3

$$\mathcal{F} \longrightarrow \Gamma(\wedge^{p} \mathrm{T}^{*} \mathcal{M}^{m})$$

{Solutions PDE} \mapsto {Closed differential p-forms}

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Generalized Isometric Embedding Problem

Genralized Isometric Embedding Problem (F. Hélein)

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 4 / 42

Generalized Isometric Embedding Problem

Genralized Isometric Embedding Problem (F. Hélein)

 \mathcal{M}^m

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 4 / 42

イロト 不得下 イヨト イヨト 二日

Generalized Isometric Embedding Problem

Genralized Isometric Embedding Problem (F. Hélein)

 \mathcal{M}^m

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 4 / 42

(日)

Generalized Isometric Embedding Problem

Genralized Isometric Embedding Problem (F. Hélein)

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 4 / 42

イロト イヨト イヨト イヨト 二日

Generalized Isometric Embedding Problem

Genralized Isometric Embedding Problem (F. Hélein)

Nabil Kahouadji, Ph.D.

<ロト < 四ト < 回ト < 回ト < 回ト = 三日

Generalized Isometric Embedding Problem

Genralized Isometric Embedding Problem (F. Hélein)

 $g, \nabla \quad \mathbb{V}^n$

Nabil Kahouadji, Ph.D.

June 14, 2011 4 / 42

<ロト < 四ト < 回ト < 回ト < 回ト = 三日

Generalized Isometric Embedding Problem

Genralized Isometric Embedding Problem (F. Hélein)

 ϕ

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 4 / 42

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Genralized Isometric Embedding Problem (F. Hélein)

Nabil Kahouadji, Ph.D.

June 14, 2011 4 / 42

<ロト < 四ト < 回ト < 回ト < 回ト = 三日

Genralized Isometric Embedding Problem (F. Hélein)

Nabil Kahouadji, Ph.D.

→ 御 ト → 注 ト → 注 ト → 注

Genralized Isometric Embedding Problem (F. Hélein)

Nabil Kahouadji, Ph.D.

June 14, 2011 4 / 42

(本部) (本語) (本語) (二語)

Genralized Isometric Embedding Problem (F. Hélein)

$$g, \nabla \quad \mathbb{V}^{n}$$
$$d_{\nabla} \phi = 0$$
$$\phi \in \Gamma(\mathbb{V}^{n} \otimes \wedge^{p} T^{*} \mathcal{M}^{m})$$

Nabil Kahouadji, Ph.D.

June 14, 2011 4 / 42

イロト 不得下 イヨト イヨト 二日

Genralized Isometric Embedding Problem (F. Hélein)

$$g, \nabla \quad \mathbb{V}^{n} \underbrace{ \Psi? }_{\mathsf{d}_{\nabla}} \phi = 0$$

$$\phi \in \Gamma(\mathbb{V}^{n} \otimes \wedge^{p} \mathrm{T}^{*} \mathcal{M}^{m})$$

Nabil Kahouadji, Ph.D.

June 14, 2011 4 / 42

イロト 不得下 イヨト イヨト 二日

Genralized Isometric Embedding Problem (F. Hélein)

 $\phi \in \Gamma(\mathbb{V}^n \otimes \wedge^p \mathrm{T}^*\mathcal{M}^m)$

Nabil Kahouadji, Ph.D.

Genralized Isometric Embedding Problem (F. Hélein)

$$g, \nabla \quad \mathbb{V}^{n} \underbrace{ \begin{array}{c} \Psi ? \\ } \mathcal{M}^{m} \times \mathbb{R}^{N_{m,p}^{n}} \\ d_{\nabla} \phi = 0 \\ \downarrow \\ \mathcal{M}^{m} \\ \phi \in \Gamma(\mathbb{V}^{n} \otimes \wedge^{p} \mathrm{T}^{*} \mathcal{M}^{m}) \\ \end{array}} \qquad \Psi(M, X) = (M, \Psi_{M} X)$$

Nabil Kahouadji, Ph.D.

June 14, 2011 4 / 42

Genralized Isometric Embedding Problem (F. Hélein)

Genralized Isometric Embedding Problem (F. Hélein)

Nabil Kahouadji, Ph.D.

June 14, 2011 4 / 42

Genralized Isometric Embedding Problem (F. Hélein)

$$g, \nabla \quad \mathbb{V}^{n} \underbrace{ \begin{array}{c} \Psi ? \\ \text{Isometric} \end{array}} \qquad \mathcal{M}^{m} \times \mathbb{R}^{N_{m,p}^{n}} \\ d_{\nabla} \phi = 0 \\ \downarrow \\ \mathcal{M}^{m} \qquad \qquad \mathcal{M}^{m} \\ \phi \in \Gamma(\mathbb{V}^{n} \otimes \wedge^{p} \mathrm{T}^{*} \mathcal{M}^{m}) \qquad \Psi(M, X) = (M, \Psi_{M} X)$$

Nabil Kahouadji, Ph.D.

June 14, 2011 4 / 42

Genralized Isometric Embedding Problem (F. Hélein)

$$g, \nabla \quad \mathbb{V}^{n} \underbrace{\Psi?}_{\text{Isometric}} \qquad \mathcal{M}^{m} \times \mathbb{R}^{N_{m,p}^{n}}$$

$$e \Gamma(\mathbb{V}^{n} \otimes \wedge^{p} \mathrm{T}^{*} \mathcal{M}^{m}) \qquad \Psi(M, X) = (M, \Psi_{M} X)$$

Nabil Kahouadji, Ph.D.

 ϕ

June 14, 2011 4 / 42

Genralized Isometric Embedding Problem (F. Hélein)

Nabil Kahouadji, Ph.D.

 ϕ

June 14, 2011 4 / 42
Genralized Isometric Embedding Problem (F. Hélein)

$$g, \nabla \quad \mathbb{V}^{n} \overset{\mathsf{CL}: \Psi ?}{\underset{\text{Isometric}}{}} \qquad \mathcal{M}^{m} \times \mathbb{R}^{N_{m,p}^{n}}$$

$$\overset{\mathsf{PDE}:}{\longrightarrow} \quad d\nabla \phi = 0$$

$$\overset{\mathsf{M}^{m}}{\overset{\mathsf{M}^{m}}}{\overset{\mathsf{M}^{m}}{\overset{\mathsf{M}^{m}}{\overset{\mathsf{M}^{m}}{\overset{\mathsf{M}^{m}}{\overset{\mathsf{M}^{m}}{\overset{\mathsf{M}^{m}}{\overset{\mathsf{M}^{m}}{\overset{\mathsf{M}^{m}}{\overset{\mathsf{M}^{m}}{\overset{\mathsf{M}^{m}}}{\overset{\mathsf{M}^{m}}{\overset{\mathsf{M}^{m}}}{\overset{\mathsf{M}^{m}}}{\overset{\mathsf{M}^{m}}{\overset{\mathsf{M}^{m}}}{\overset{\mathsf{M}^{m}}}{\overset{\mathsf{M}^{m}}}{\overset{\mathsf{M}^{m}}}{\overset{\mathsf{M}^{m}}}{\overset{\mathsf{M}^{m}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$$

• The ingredients of the generalized isometric embedding are :

$$(\mathbb{V}^n,\mathcal{M}^m,\mathsf{g},
abla,\phi)_{p}$$

Nabil Kahouadji, Ph.D.

 ϕ

June 14, 2011 4 / 42

Genralized Isometric Embedding Problem (F. Hélein)

$$g_{\mathcal{N}} \bigvee^{n} \underbrace{\overset{\mathbb{C} L: \Psi ?}{\underset{\text{Isometric}}{}}}_{\text{Isometric}} \mathcal{M}^{m} \times \mathbb{R}^{N_{m,p}^{n}}$$

$$d\Psi(\phi) = 0$$

$$\int_{\mathcal{M}}^{m} \int_{\mathcal{M}}^{m} \mathcal{M}^{m}$$

$$\in \Gamma(\mathbb{V}^{n} \otimes \wedge^{p} T^{*} \mathcal{M}^{m}) \qquad \Psi(M, X) = (M, \Psi_{M} X)$$

• The ingredients of the generalized isometric embedding are :

$$(\mathbb{V}^n,\mathcal{M}^m,\mathsf{g},
abla,\phi)_p$$

• The problem is trivial when n = 1.

Nabil Kahouadji, Ph.D.

 ϕ

(人間) システンステン (日)

Generalized Isometric Embedding Problem

What happens locally?

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 5 / 42

(日)

Generalized Isometric Embedding Problem

What happens locally?

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

Generalized Isometric Embedding Problem

What happens locally?

$$g_{,\nabla} \quad \mathbb{V}^{n} \underbrace{ \begin{array}{c} \Psi \\ \text{Isometric} \end{array}} \mathcal{M}^{m} \times \mathbb{R}^{N_{m,p}^{n}} \\ d_{\nabla} \phi = 0 \\ \downarrow \\ \lambda, \mu, \nu = 1 \text{ to } m \\ \phi \in \Gamma(\mathbb{V}^{n} \otimes \wedge^{p} \mathrm{T}^{*} \mathcal{M}^{m}) \qquad \Psi(M, X) = (M, \Psi_{M} X)$$

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 5 / 42

(日)

What happens locally?

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

Control Contro

What happens locally?

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 5 / 42

(日)

🐯 McGill Generalized Isometric Embedding Problem

What happens locally?

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011

(日)

5 / 42

Generalized Isometric Embedding Problem

What happens locally?

$$i, j, k = 1 \text{ to } n \qquad g_{i} \nabla \qquad \mathbb{V}^{n} \underbrace{ \begin{array}{c} \Psi \\ \text{Isometric} \end{array}} \mathcal{M}^{m} \times \mathbb{R}^{N_{m,p}^{n}} \quad A, B, C = 1 \text{ to } N \\ a, b, c = n + 1 \text{ to } N \\ d \nabla \phi = 0 \\ \downarrow \\ \lambda, \mu, \nu = 1 \text{ to } m \qquad \mathcal{M}^{m} \qquad \mathcal{M}^{m} \\ \phi \in \Gamma(\mathbb{V}^{n} \otimes \wedge^{p} T^{*} \mathcal{M}^{m}) \qquad \Psi(M, X) = (M, \Psi_{M} X) \\ \bullet \phi = E_{i} \phi^{i}.$$

Nabil Kahouadji, Ph.D.

June 14, 2011 5 / 42

イロト イヨト イヨト イヨト 二日

What happens locally?

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

What happens locally?

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

What happens locally?

Nabil Kahouadji, Ph.D.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

What happens locally?

 $\begin{array}{cccc} i,j,k=1 \text{ to } n & g, \nabla & \mathbb{V}^n \underbrace{ \overset{\Psi}{\overset{}_{\text{Isometric}}}}_{\text{Isometric}} & \mathcal{M}^m \times \mathbb{R}^{N^n_{m,p}} & A, B, C = 1 \text{ to } N \\ & & a, b, c = n+1 \text{ to } N \\ & & d_{\nabla} \phi = 0 \\ & & & d\Psi(\phi) = 0 \\ & & & \mathcal{M}^m & & \mathcal{M}^m \end{array}$ $\Psi(M,X) = (M,\Psi_M X)$ $\phi \in \Gamma(\mathbb{V}^n \otimes \wedge^p \mathrm{T}^* \mathcal{M}^m)$ • $\phi = E_i \phi^i$. Then $d_{\nabla} \phi = 0 \Leftrightarrow d\phi^i + \eta^i_i \wedge \phi^j = 0$, where (η^i_i) is the connection 1-form of ∇ ($\nabla E_j = \eta'_i E_i$). • $\Psi(E_i) = e_i$.

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ● ● ● ● ● ● ●

What happens locally?

- $\phi = E_i \phi^i$. Then $d_{\nabla} \phi = 0 \Leftrightarrow d\phi^i + \eta^i_j \wedge \phi^j = 0$, where (η^i_j) is the connection 1-form of $\nabla (\nabla E_j = \eta^i_j E_i)$.
- Ψ(E_i) = e_i. Let us complement (e₁,..., e_m) to obtain an orthonormal moving frame on ℝ<sup>Nⁿ_{m,p}.
 </sup>

▲冊 ▲ 目 ▲ 目 ▲ 目 ● ○ ○ ○

What happens locally?

 $i, j, k = 1 \text{ to } n \qquad g, \nabla \qquad \mathbb{V}^n \underbrace{ \stackrel{\Psi}{\underset{\text{Isometric}}{}}}_{\text{Isometric}} \mathcal{M}^m \times \mathbb{R}^{N^n_{m,p}} \quad A, B, C = 1 \text{ to } N$ $\begin{array}{c} a, b, c = n+1 \text{ to } N \\ d\Psi(\phi) = 0 \end{array}$ $\mathbf{d}_{\nabla}\,\phi = \mathbf{0}$ $\lambda, \mu, \nu = \mathbf{1} \text{ to } \mathbf{m}$ $\Psi(M,X)=(M,\Psi_MX)$ $\phi \in \Gamma(\mathbb{V}^n \otimes \wedge^p \mathrm{T}^* \mathcal{M}^m)$ • $\phi = E_i \phi^i$. Then $d_{\nabla} \phi = 0 \Leftrightarrow d\phi^i + \eta^i_i \wedge \phi^j = 0$, where (η^i_i) is the connection 1-form of ∇ ($\nabla E_j = \eta'_i E_i$). • $\Psi(E_i) = e_i$. Let us complement (e_1, \ldots, e_m) to obtain an orthonormal

moving frame on $\mathbb{R}^{N_{m,p}^n}$. Then the flat connection ω on $\mathbb{R}^{N_{m,p}^n}$ is $\omega_B^A = \langle e_A, \mathrm{d} e_B \rangle_{\mathbb{R}^{N_{m,p}^n}}$.

Nabil Kahouadji, Ph.D.

(日本)

What happens locally?

 $\mathbf{d}_{\nabla}\,\phi = \mathbf{0}$ $\lambda, \mu, \nu = \mathbf{1} \text{ to } \mathbf{m}$ $\Psi(M,X)=(M,\Psi_MX)$ $\phi \in \Gamma(\mathbb{V}^n \otimes \wedge^p \mathrm{T}^* \mathcal{M}^m)$ • $\phi = E_i \phi^i$. Then $d_{\nabla} \phi = 0 \Leftrightarrow d\phi^i + \eta^i_i \wedge \phi^j = 0$, where (η^i_i) is the connection 1-form of ∇ ($\nabla E_j = \eta'_i E_i$). • $\Psi(E_i) = e_i$. Let us complement (e_1, \ldots, e_m) to obtain an orthonormal moving frame on $\mathbb{R}^{N_{m,p}^n}$. Then the flat connection ω on $\mathbb{R}^{N_{m,p}^n}$ is $\omega_B^A = \langle e_A, \mathrm{d} e_B \rangle_{\mathbb{R}^{N_{m,p}^n}}.$ • $d\Psi(\phi) =$

Nabil Kahouadji, Ph.D.

What happens locally?

 $i, j, k = 1 \text{ to } n \qquad g, \nabla \qquad \mathbb{V}^n \underbrace{ \stackrel{\Psi}{\longrightarrow} \mathcal{M}^m \times \mathbb{R}^{N_{m,p}^n} \quad A, B, C = 1 \text{ to } N}_{\text{Isometric}} \\ d_{\nabla} \phi = 0 \qquad \qquad \begin{vmatrix} a, b, c = n+1 \text{ to } N \\ d\Psi(\phi) = 0 \end{vmatrix}$ $\mathbf{d}_{\nabla}\,\phi = \mathbf{0}$, $\mu, \nu = \mathbf{1}$ to m , \mathcal{M}^m $\Psi(M,X)=(M,\Psi_MX)$ $\phi \in \Gamma(\mathbb{V}^n \otimes \wedge^p \mathrm{T}^* \mathcal{M}^m)$ • $\phi = E_i \phi^i$. Then $d_{\nabla} \phi = 0 \Leftrightarrow d\phi^i + \eta^i_i \wedge \phi^j = 0$, where (η^i_i) is the connection 1-form of ∇ ($\nabla E_j = \eta'_i E_i$). • $\Psi(E_i) = e_i$. Let us complement (e_1, \ldots, e_m) to obtain an orthonormal moving frame on $\mathbb{R}^{N_{m,p}^n}$. Then the flat connection ω on $\mathbb{R}^{N_{m,p}^n}$ is $\omega_B^A = \langle e_A, \mathrm{d} e_B \rangle_{\mathbb{R}^{N_{m,p}^n}}.$ • $d\Psi(\phi) = d\Psi(E_i\phi^i) =$

Nabil Kahouadji, Ph.D.

What happens locally?

 $\begin{array}{c|c} i,j,k = 1 \text{ to } n & g, \nabla & \mathbb{V}^n \underbrace{ \stackrel{\Psi}{\longrightarrow} \mathcal{M}^m \times \mathbb{R}^{N_{m,p}^n} & A, B, C = 1 \text{ to } N \\ & & \\$ $\mathbf{d}_{\nabla}\,\phi = \mathbf{0}$, $\mu, \nu = \mathbf{1}$ to m , \mathcal{M}^m $\Psi(M,X)=(M,\Psi_MX)$ $\phi \in \Gamma(\mathbb{V}^n \otimes \wedge^p \mathrm{T}^* \mathcal{M}^m)$ • $\phi = E_i \phi^i$. Then $d_{\nabla} \phi = 0 \Leftrightarrow d\phi^i + \eta^i_i \wedge \phi^j = 0$, where (η^i_i) is the connection 1-form of ∇ ($\nabla E_j = \eta'_i E_i$). • $\Psi(E_i) = e_i$. Let us complement (e_1, \ldots, e_m) to obtain an orthonormal moving frame on $\mathbb{R}^{N_{m,p}^n}$. Then the flat connection ω on $\mathbb{R}^{N_{m,p}^n}$ is $\omega_{B}^{A} = \langle e_{A}, \mathrm{d} e_{B} \rangle_{\mathrm{m}N_{m}^{n}}$

•
$$\mathrm{d}\Psi(\phi) = \mathrm{d}\Psi(E_i\phi^i) = \mathrm{d}(e_i\phi^i) =$$

Nabil Kahouadji, Ph.D.

(日本)

What happens locally?

- $\phi = E_i \phi'$. Then $d_{\nabla} \phi = 0 \Leftrightarrow d\phi' + \eta'_j \land \phi^j = 0$, where (η'_j) is the connection 1-form of $\nabla (\nabla E_j = \eta^i_j E_i)$.
- $\Psi(E_i) = e_i$. Let us complement (e_1, \ldots, e_m) to obtain an orthonormal moving frame on $\mathbb{R}^{N_{m,p}^n}$. Then the flat connection ω on $\mathbb{R}^{N_{m,p}^n}$ is $\omega_B^A = \langle e_A, \mathrm{d} e_B \rangle_{\mathbb{R}^{N_{m,p}^n}}$.

•
$$\mathrm{d}\Psi(\phi) = \mathrm{d}\Psi(E_i\phi^i) = \mathrm{d}(e_i\phi^i) = e_i(\mathrm{d}\phi^i + \omega_j^i \wedge \phi^j) + e_a(\omega_i^a \wedge \phi^i) = 0.$$

Nabil Kahouadji, Ph.D.

(日本)

What happens locally?

 $i, j, k = 1 \text{ to } n \qquad g_{N} \nabla \qquad \mathbb{V}^{n} \underbrace{ \stackrel{\Psi}{\underset{\text{Isometric}}{}}}_{\text{Isometric}} \mathcal{M}^{m} \times \mathbb{R}^{N_{m,p}^{n}} \quad A, B, C = 1 \text{ to } N \\ \begin{array}{c} a, b, c = n+1 \text{ to } N \\ d\Psi(\phi) = 0 \end{array}$ $\lambda, \mu,
u = 1$ to m $\phi \in \Gamma(\mathbb{V}^n \otimes \wedge^p \mathrm{T}^* \mathcal{M}^m)$ $\Psi(M,X)=(M,\Psi_MX)$ • $\phi = E_i \phi^i$. Then $d_{\nabla} \phi = 0 \Leftrightarrow d\phi^i + \eta^i_i \wedge \phi^j = 0$, where (η^i_i) is the connection 1-form of ∇ ($\nabla E_i = \eta'_i E_i$). • $\Psi(E_i) = e_i$. Let us complement (e_1, \ldots, e_m) to obtain an orthonormal moving frame on $\mathbb{R}^{N_{m,p}^n}$. Then the flat connection ω on $\mathbb{R}^{N_{m,p}^n}$ is $\omega_B^A = \langle e_A, \mathrm{d} e_B \rangle_{\mathbb{R}^{N_{m,p}^n}}.$ • $\mathrm{d}\Psi(\phi) = \mathrm{d}\Psi(E_i\phi^i) = \mathrm{d}(e_i\phi^i) = e_i(\mathrm{d}\phi^i + \omega_i^i \wedge \phi^j) + e_a(\omega_i^a \wedge \phi^i) = 0.$ $\Psi^*(\omega_i^i) = \eta_i^i$ and $\Psi^*(\omega_i^a) \wedge \phi^i = 0$

Nabil Kahouadji, Ph.D.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・

Two Fundamental Motivations

Motivation 1 : Isometric Embedding Problem of Riemannian manifolds

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 6 / 42

Two Fundamental Motivations

Motivation 1 : Isometric Embedding Problem of Riemannian manifolds

 (\mathcal{M}^m,g)

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 6 / 42

Motivation 1 : Isometric Embedding Problem of Riemannian manifolds

$$(\mathcal{M}^m, g)$$

Nabil Kahouadji, Ph.D.

June 14, 2011 6 / 42

Motivation 1 : Isometric Embedding Problem of Riemannian manifolds

$$(\mathcal{M}^m, g) \subset \frac{u?}{\text{Isometric}}$$

Nabil Kahouadji, Ph.D.

June 14, 2011 6 / 42

Two Fundamental Motivations

Motivation 1 : Isometric Embedding Problem of Riemannian manifolds

$$(\mathcal{M}^m,g) \subset \frac{u?}{\text{Isometric}} (\mathbb{R}^N,\langle,\rangle_{\mathbb{R}^N})$$

Nabil Kahouadji, Ph.D.

June 14, 2011 6 / 42

Motivation 1 : Isometric Embedding Problem of Riemannian manifolds

$$(\mathcal{M}^m,g) \subset \frac{u?}{\text{Isometric}} (\mathbb{R}^N,\langle,\rangle_{\mathbb{R}^N})$$

The isometric embedding problem is equivalent to the generalized isometric embedding problem when :

Nabil Kahouadji, Ph.D.

Motivation 1 : Isometric Embedding Problem of Riemannian manifolds

$$(\mathcal{M}^m,g) \subset \frac{u?}{\text{Isometric}} (\mathbb{R}^N,\langle,\rangle_{\mathbb{R}^N})$$

The isometric embedding problem is equivalent to the generalized isometric embedding problem when :

 $(\mathbb{V}^n, \mathcal{M}^m, g, \nabla, \phi)_p$

イロト 不得 トイヨト イヨト ヨー ろくで

Wr McGill T

Motivation 1 : Isometric Embedding Problem of Riemannian manifolds

$$(\mathcal{M}^m,g) \subset \frac{u?}{\text{Isometric}} (\mathbb{R}^N,\langle,\rangle_{\mathbb{R}^N})$$

The isometric embedding problem is equivalent to the generalized isometric embedding problem when :

$$(\mathbb{V}^n, \mathcal{M}^m, g, \nabla, \phi)_p = (\mathrm{T}\mathcal{M}^m, \mathcal{M}^m, g,$$

Nabil Kahouadji, Ph.D.

🐯 McGill Tu

Motivation 1 : Isometric Embedding Problem of Riemannian manifolds

$$(\mathcal{M}^m,g) \subset \frac{u?}{\text{Isometric}} (\mathbb{R}^N,\langle,\rangle_{\mathbb{R}^N})$$

The isometric embedding problem is equivalent to the generalized isometric embedding problem when :

$$(\mathbb{V}^n, \mathcal{M}^m, g, \nabla, \phi)_{\rho} = (T\mathcal{M}^m, \mathcal{M}^m, g, \nabla, \phi)_{\rho}$$

Nabil Kahouadji, Ph.D.

🐯 McGill Tw

Motivation 1 : Isometric Embedding Problem of Riemannian manifolds

$$(\mathcal{M}^m,g) \subset \frac{u?}{\text{Isometric}} (\mathbb{R}^N,\langle,\rangle_{\mathbb{R}^N})$$

The isometric embedding problem is equivalent to the generalized isometric embedding problem when :

$$(\mathbb{V}^n, \mathcal{M}^m, g, \nabla, \phi)_p = (\mathrm{T}\mathcal{M}^m, \mathcal{M}^m, g, \nabla, \mathrm{Id}_{\mathrm{T}\mathcal{M}^m})_1$$

Tw McGill Tw

Motivation 1 : Isometric Embedding Problem of Riemannian manifolds

$$(\mathcal{M}^m,g) \subset \frac{u?}{\text{Isometric}} (\mathbb{R}^N,\langle,\rangle_{\mathbb{R}^N})$$

The isometric embedding problem is equivalent to the generalized isometric embedding problem when :

$$(\mathbb{V}^n, \mathcal{M}^m, g, \nabla, \phi)_{\rho} = (\mathrm{T}\mathcal{M}^m, \mathcal{M}^m, g, \nabla, \mathrm{Id}_{\mathrm{T}\mathcal{M}^m})_{\mathbf{1}}$$

and this is done through

 $\Psi(\phi) = \mathrm{d} u$

Nabil Kahouadji, Ph.D.

June 14, 2011 6 / 42

Tw McGill Tw

Motivation 1 : Isometric Embedding Problem of Riemannian manifolds

$$(\mathcal{M}^m,g) \subset \frac{u?}{\text{Isometric}} (\mathbb{R}^N,\langle,\rangle_{\mathbb{R}^N})$$

The isometric embedding problem is equivalent to the generalized isometric embedding problem when :

$$(\mathbb{V}^n, \mathcal{M}^m, g, \nabla, \phi)_p = (\mathrm{T}\mathcal{M}^m, \mathcal{M}^m, g, \nabla, \mathrm{Id}_{\mathrm{T}\mathcal{M}^m})_1$$

and this is done through

 $\Psi(\phi) = \mathrm{d} u$

• Cartan–Janet :

Nabil Kahouadji, Ph.D.

(人間) トイヨト イヨト 三日

Tw McGill

Motivation 1 : Isometric Embedding Problem of Riemannian manifolds

$$(\mathcal{M}^m,g) \subset \frac{u?}{\text{Isometric}} (\mathbb{R}^N,\langle,\rangle_{\mathbb{R}^N})$$

The isometric embedding problem is equivalent to the generalized isometric embedding problem when :

$$(\mathbb{V}^n, \mathcal{M}^m, g, \nabla, \phi)_p = (\mathrm{T}\mathcal{M}^m, \mathcal{M}^m, g, \nabla, \mathrm{Id}_{\mathrm{T}\mathcal{M}^m})_1$$

and this is done through

 $\Psi(\phi) = \mathrm{d} u$

- Cartan–Janet :
- Nash :

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 6 / 42

(人間) トイヨト イヨト 三日

🐯 McGill Tu

Motivation 1 : Isometric Embedding Problem of Riemannian manifolds

$$(\mathcal{M}^m,g) \subset \frac{u?}{\text{Isometric}} (\mathbb{R}^N,\langle,\rangle_{\mathbb{R}^N})$$

The isometric embedding problem is equivalent to the generalized isometric embedding problem when :

$$(\mathbb{V}^n, \mathcal{M}^m, g, \nabla, \phi)_p = (T\mathcal{M}^m, \mathcal{M}^m, g, \nabla, \mathrm{Id}_{T\mathcal{M}^m})_1$$

and this is done through

 $\Psi(\phi) = \mathrm{d} u$

- Cartan–Janet : local result
- Nash :

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 7 / 42

(人間) トイヨト イヨト ニヨ

Motivation 1 : Isometric Embedding Problem of Riemannian manifolds

$$(\mathcal{M}^m,g) \subset \frac{u?}{\text{Isometric}} (\mathbb{R}^N,\langle,\rangle_{\mathbb{R}^N})$$

The isometric embedding problem is equivalent to the generalized isometric embedding problem when :

$$(\mathbb{V}^n, \mathcal{M}^m, g, \nabla, \phi)_{\rho} = (\mathrm{T}\mathcal{M}^m, \mathcal{M}^m, g, \nabla, \mathrm{Id}_{\mathrm{T}\mathcal{M}^m})_1$$

and this is done through

 $\Psi(\phi) = \mathrm{d} u$

- Cartan–Janet : local result
- Nash : global result

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 8 / 42

- 御下 - ヨト - ヨト - ヨ

Motivation 1 : Isometric Embedding Problem of Riemannian manifolds

$$(\mathcal{M}^m,g) \subset \frac{u?}{\text{Isometric}} (\mathbb{R}^N,\langle,\rangle_{\mathbb{R}^N})$$

The isometric embedding problem is equivalent to the generalized isometric embedding problem when :

$$(\mathbb{V}^n, \mathcal{M}^m, g, \nabla, \phi)_{\rho} = (\mathrm{T}\mathcal{M}^m, \mathcal{M}^m, g, \nabla, \mathrm{Id}_{\mathrm{T}\mathcal{M}^m})_1$$

and this is done through

 $\Psi(\phi) = \mathrm{d} u$

- Cartan-Janet : local result in the analytic category,
- Nash : global result

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 9 / 42

メボト イラト イラト 一日
Motivation 1 : Isometric Embedding Problem of Riemannian manifolds

$$(\mathcal{M}^m,g) \subset \frac{u?}{\text{Isometric}} (\mathbb{R}^N,\langle,\rangle_{\mathbb{R}^N})$$

The isometric embedding problem is equivalent to the generalized isometric embedding problem when :

$$(\mathbb{V}^n, \mathcal{M}^m, g, \nabla, \phi)_{\rho} = (\mathrm{T}\mathcal{M}^m, \mathcal{M}^m, g, \nabla, \mathrm{Id}_{\mathrm{T}\mathcal{M}^m})_1$$

and this is done through

 $\Psi(\phi) = \mathrm{d} u$

- Cartan-Janet : local result in the analytic category,
- Nash : global result in the smooth category,

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 10 / 42

Motivation 1 : Isometric Embedding Problem of Riemannian manifolds

$$(\mathcal{M}^m,g) \subset \frac{u?}{\text{Isometric}} (\mathbb{R}^N,\langle,\rangle_{\mathbb{R}^N})$$

The isometric embedding problem is equivalent to the generalized isometric embedding problem when :

$$(\mathbb{V}^n, \mathcal{M}^m, g, \nabla, \phi)_{\rho} = (\mathrm{T}\mathcal{M}^m, \mathcal{M}^m, g, \nabla, \mathrm{Id}_{\mathrm{T}\mathcal{M}^m})_1$$

and this is done through

$$\Psi(\phi) = \mathrm{d} u$$

- Cartan–Janet : local result in the analytic category, N = m(m+1)/2.
- Nash : global result in the smooth category,

Nabil Kahouadji, Ph.D.

June 14, 2011 11 / 42

🐯 McGill 💦 🧃

Motivation 1 : Isometric Embedding Problem of Riemannian manifolds

$$(\mathcal{M}^m,g) \subset \frac{u?}{\text{Isometric}} (\mathbb{R}^N,\langle,\rangle_{\mathbb{R}^N})$$

The isometric embedding problem is equivalent to the generalized isometric embedding problem when :

$$(\mathbb{V}^n, \mathcal{M}^m, g, \nabla, \phi)_{\rho} = (\mathrm{T}\mathcal{M}^m, \mathcal{M}^m, g, \nabla, \mathrm{Id}_{\mathrm{T}\mathcal{M}^m})_1$$

and this is done through

$$\Psi(\phi) = \mathrm{d} u$$

- Cartan–Janet : local result in the analytic category, N = m(m+1)/2.
- Nash : global result in the smooth category, *N* is higher.

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 12 / 42

Two Fundamental Motivations

Motivation 2 : Harmonic maps between Riemannian manifolds

Nabil Kahouadji, Ph.D. Conservation Laws and Generalized Isometric Embeddings June 14, 2011 13 / 42

イロト 不得下 イヨト イヨト 二日

Two Fundamental Motivations

Motivation 2 : Harmonic maps between Riemannian manifolds

 $u: (\mathcal{M}^m, g) \longrightarrow (\mathcal{N}^n, h)$ is harmonic

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 13 / 42

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Two Fundamental Motivations

Motivation 2 : Harmonic maps between Riemannian manifolds

 $u: (\mathcal{M}^m, g) \longrightarrow (\mathcal{N}^n, h)$ is harmonic if u is a critical point of the energy functional

$$\mathsf{E}[u] = \int_{\mathcal{M}^m} \frac{|\mathrm{d} u|^2}{2} \mathrm{Vol}_{\mathcal{M}^m}$$

Nabil Kahouadji, Ph.D.

June 14, 2011 13 / 42

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Two Fundamental Motivations

Motivation 2 : Harmonic maps between Riemannian manifolds

 $u: (\mathcal{M}^m, g) \longrightarrow (\mathcal{N}^n, h)$ is harmonic if u is a critical point of the energy functional

$$\mathsf{E}[u] = \int_{\mathcal{M}^m} \frac{|\mathrm{d}u|^2}{2} \mathrm{Vol}_{\mathcal{M}^m}$$

Locally, the Euler-Lagrange equations are :

Nabil Kahouadji, Ph.D.

Two Fundamental Motivations

Motivation 2 : Harmonic maps between Riemannian manifolds

 $u: (\mathcal{M}^m, g) \longrightarrow (\mathcal{N}^n, h)$ is harmonic if u is a critical point of the energy functional

$$\mathsf{E}[u] = \int_{\mathcal{M}^m} \frac{|\mathrm{d}u|^2}{2} \mathrm{Vol}_{\mathcal{M}^m}$$

Locally, the Euler-Lagrange equations are :

 $\Delta_g u^i$

Nabil Kahouadji, Ph.D.

- 日本 - 日本 - 日本 - シック

Two Fundamental Motivations

Motivation 2 : Harmonic maps between Riemannian manifolds

 $u: (\mathcal{M}^m, g) \longrightarrow (\mathcal{N}^n, h)$ is harmonic if u is a critical point of the energy functional

$$\mathsf{E}[u] = \int_{\mathcal{M}^m} \frac{|\mathrm{d}u|^2}{2} \mathrm{Vol}_{\mathcal{M}^m}$$

Locally, the Euler-Lagrange equations are :

$$\Delta_{g} u^{i} + g^{\alpha\beta} \Gamma^{i}_{jk} \left(u(x) \right) \frac{\partial u^{j}}{\partial x^{\alpha}} \frac{\partial u^{k}}{\partial x^{\beta}} = 0$$

Nabil Kahouadji, Ph.D.

- 日本 - 日本 - 日本 - シック

Two Fundamental Motivations

Motivation 2 : Harmonic maps between Riemannian manifolds

 $u: (\mathcal{M}^m, g) \longrightarrow (\mathcal{N}^n, h)$ is harmonic if u is a critical point of the energy functional

$$\mathsf{E}[u] = \int_{\mathcal{M}^m} \frac{|\mathrm{d}u|^2}{2} \mathrm{Vol}_{\mathcal{M}^m}$$

Locally, the Euler-Lagrange equations are :

$$\Delta_{g} u^{i} + g^{\alpha\beta} \Gamma^{i}_{jk} \left(u(x) \right) \frac{\partial u^{j}}{\partial x^{\alpha}} \frac{\partial u^{k}}{\partial x^{\beta}} = 0$$

The identity map, constant maps,

Nabil Kahouadji, Ph.D.

Two Fundamental Motivations

Motivation 2 : Harmonic maps between Riemannian manifolds

 $u: (\mathcal{M}^m, g) \longrightarrow (\mathcal{N}^n, h)$ is harmonic if u is a critical point of the energy functional

$$\mathsf{E}[u] = \int_{\mathcal{M}^m} \frac{|\mathrm{d}u|^2}{2} \mathrm{Vol}_{\mathcal{M}^m}$$

Locally, the Euler-Lagrange equations are :

$$\Delta_{g} u^{i} + g^{\alpha\beta} \Gamma^{i}_{jk} \left(u(x) \right) \frac{\partial u^{j}}{\partial x^{\alpha}} \frac{\partial u^{k}}{\partial x^{\beta}} = 0$$

The identity map, constant maps, harmonic functions,

Nabil Kahouadji, Ph.D.

Two Fundamental Motivations

Motivation 2 : Harmonic maps between Riemannian manifolds

 $u: (\mathcal{M}^m, g) \longrightarrow (\mathcal{N}^n, h)$ is harmonic if u is a critical point of the energy functional

$$\Xi[u] = \int_{\mathcal{M}^m} \frac{|\mathrm{d}u|^2}{2} \mathrm{Vol}_{\mathcal{M}^m}$$

Locally, the Euler-Lagrange equations are :

$$\Delta_{g} u^{i} + g^{\alpha\beta} \Gamma^{i}_{jk} \left(u(x) \right) \frac{\partial u^{j}}{\partial x^{\alpha}} \frac{\partial u^{k}}{\partial x^{\beta}} = 0$$

The identity map, constant maps, harmonic functions, parameterization of geodesics,

Nabil Kahouadji, Ph.D.

Two Fundamental Motivations

Motivation 2 : Harmonic maps between Riemannian manifolds

 $u: (\mathcal{M}^m, g) \longrightarrow (\mathcal{N}^n, h)$ is harmonic if u is a critical point of the energy functional

$$\Xi[u] = \int_{\mathcal{M}^m} \frac{|\mathrm{d}u|^2}{2} \mathrm{Vol}_{\mathcal{M}^m}$$

Locally, the Euler-Lagrange equations are :

$$\Delta_{g} u^{i} + g^{\alpha\beta} \Gamma^{i}_{jk} \left(u(x) \right) \frac{\partial u^{j}}{\partial x^{\alpha}} \frac{\partial u^{k}}{\partial x^{\beta}} = 0$$

The identity map, constant maps, harmonic functions, parameterization of geodesics, minimal isometric immersions,

Nabil Kahouadji, Ph.D.

Two Fundamental Motivations

Motivation 2 : Harmonic maps between Riemannian manifolds

 $u: (\mathcal{M}^m, g) \longrightarrow (\mathcal{N}^n, h)$ is harmonic if u is a critical point of the energy functional

$$\Xi[u] = \int_{\mathcal{M}^m} \frac{|\mathrm{d}u|^2}{2} \mathrm{Vol}_{\mathcal{M}^m}$$

Locally, the Euler-Lagrange equations are :

$$\Delta_{g} u^{i} + g^{\alpha\beta} \Gamma^{i}_{jk} \left(u(x) \right) \frac{\partial u^{j}}{\partial x^{\alpha}} \frac{\partial u^{k}}{\partial x^{\beta}} = 0$$

The identity map, constant maps, harmonic functions, parameterization of geodesics, minimal isometric immersions, holomorphic and anti-holomorphic maps between Kählerian manifolds, ...

Nabil Kahouadji, Ph.D.

Two Fundamental Motivations

Motivation 2 : Harmonic maps between Riemannian manifolds

Nabil Kahouadji, Ph.D. Conservation Laws and Generalized Isometric Embeddings June 14, 2011 14 / 42

イロト 不得下 イヨト イヨト 二日

Two Funda

Two Fundamental Motivations

Motivation 2 : Harmonic maps between Riemannian manifolds

 \mathcal{M}^m

 \mathcal{N}^n

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 1

イロト 不得下 イヨト イヨト 二日

14 / 42

Two Fundamental Motivations

Motivation 2 : Harmonic maps between Riemannian manifolds

$$\mathcal{M}^m \xrightarrow{u} \mathcal{N}^n$$

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 14 / 42

イロト 不得下 イヨト イヨト 二日

Two Fundamental Motivations

Motivation 2 : Harmonic maps between Riemannian manifolds

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 14 / 42

イロト 不得 トイラト イラト 二日

Two Fundamental Motivations

Motivation 2 : Harmonic maps between Riemannian manifolds

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 14 / 42

イロト 不得 トイラト イラト 二日

Two Fundamental Motivations

Motivation 2 : Harmonic maps between Riemannian manifolds

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 14

イロト 不得下 イヨト イヨト 二日

14 / 42

Two Fundamental Motivations

Motivation 2 : Harmonic maps between Riemannian manifolds

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 1

A B > A B >

14 / 42

Two Fundamental Motivations

Motivation 2 : Harmonic maps between Riemannian manifolds

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 14 / 42

(人間) トイヨト イヨト ニヨ

Two Fundamental Motivations

Motivation 2 : Harmonic maps between Riemannian manifolds

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 1

- (個) - (日) - (日) - (日)

14 / 42

Two Fundamental Motivations

Motivation 2 : Harmonic maps between Riemannian manifolds

Nabil Kahouadji, Ph.D.

June 14, 2011 14 / 42

(4) (5) (4) (5) (5)

Two Fundamental Motivations

Motivation 2 : Harmonic maps between Riemannian manifolds

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

 ▲ ■ ▶ ▲ ■ ▶ ■ ■

 June 14, 2011

14 / 42

Two Fundamental Motivations

Motivation 2 : Harmonic maps between Riemannian manifolds

Nabil Kahouadji, Ph.D.

June 14, 2011 14 / 42

(4) (5) (4) (5) (5)

Two Fundamental Motivations

Motivation 2 : Harmonic maps between Riemannian manifolds

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

✓ ≥ > < ≥ > ≥ June 14, 2011 1.

14 / 42

Two Fundamental Motivations

Motivation 2 : Harmonic maps between Riemannian manifolds

 $d_{\nabla}(\star du) = 0 \Leftrightarrow u$ is harmonic

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

Two Fundamental Motivations

Motivation 2 : Harmonic maps between Riemannian manifolds

 $d_{\nabla}(\star du) = 0 \Leftrightarrow u$ is harmonic

A harmonic map u produces the ingredients $(u^*T\mathcal{N}^n, \mathcal{M}^m, g, \nabla, \star du)_{(m-1)}$ of the generalized isometric embedding problem.

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 14 / 42

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ● ● ● ● ● ● ●

The Keystone!

Two Fundamental Motivations

 Nabil Kahouadji, Ph.D.
 Conservation Laws and Generalized Isometric Embeddings
 June 14, 2011
 15 / 42

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

Two Fundamental Motivations

The Keystone! Noether's Theorem!

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 1

イロト イヨト イヨト イヨト 二日

16 / 42

Two Fundamental Motivations

The Keystone! Noether's Theorem!

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 17 / 42

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The Keystone! Noether's Theorem!

$$\begin{array}{c} g, \nabla, u^* T \mathcal{S}^n \\ d_{\nabla}(\star du) \\ \mathcal{M}^m \end{array}$$

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 18 / 42

イロト イヨト イヨト イヨト 二日

The Keystone! Noether's Theorem!

$$\begin{array}{c} g, \nabla, u^* T \mathcal{S}^n & \smile \Psi \\ \\ d_{\nabla}(\star du) \\ & \downarrow \\ \mathcal{M}^m \end{array}$$

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 18 / 42

イロト イヨト イヨト イヨト 二日

Two Fundamental Motivations

The Keystone! Noether's Theorem!

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 18 / 42

イロト 不得 トイヨト イヨト ヨー ろくで

Two Fundamental Motivations

The Keystone! Noether's Theorem!

 $\Psi(M,v)=(M,u\times v)$

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 18 / 42

→ ■ ▶ ★ ■ ▶ ★ ■ ▶ → ■ → ○ ○ ○
Two Fundamental Motivations

The Generalized Isometric Embedding Problem's Goal

To show the existence of the analogeous of conservation laws when there are no symmetries for a system of partial differential equations.

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 19 / 42

- 4 同 6 4 回 6 4 回 6

Results

Results

 Nabil Kahouadji, Ph.D.
 Conservation Laws and Generalized Isometric Embeddings
 June 14, 2011
 20 / 42

Results

Construction of local conservation laws by generalized isometric embedding of vector bundles, arXiv :0804.2608 (2010), to appear in Asian J. of Math.

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011

イロト 不得下 イヨト イヨト 二日

20 / 42

Results

Results

Construction of local conservation laws by generalized isometric embedding of vector bundles, arXiv :0804.2608 (2010), to appear in Asian J. of Math.

Theorem $((\mathbb{V}^n, \mathcal{M}^m, \mathbf{g}, \nabla, \phi)_{m-1} \text{ case})$

Let \mathbb{V}^n be a real analytic n-dimensional vector bundle over a real analytic *m*-dimensional manifold \mathcal{M}^m endowed with a metric *g* and a connection ∇ compatible with *g*. Given a non-vanishing covariantly closed \mathbb{V}^n -valued differential (m-1)-form ϕ , there exists a local generalized isometric embedding of \mathbb{V}^n in $\mathcal{M}^m \times \mathbb{R}^{n+\kappa_{m,m-1}^n}$ over \mathcal{M}^m , where $\kappa_{m,m-1}^n \ge (m-1)(n-1)$ such that the image of ϕ is a conservation law.

Nabil Kahouadji, Ph.D.

Results

Results

Construction of local conservation laws by generalized isometric embedding of vector bundles, arXiv :0804.2608 (2010), to appear in Asian J. of Math.

Theorem $((\mathbb{V}^n, \mathcal{M}^m, \mathbf{g}, \nabla, \phi)_{m-1} \text{ case})$

Let \mathbb{V}^n be a real analytic n-dimensional vector bundle over a real analytic *m*-dimensional manifold \mathcal{M}^m endowed with a metric *g* and a connection ∇ compatible with *g*. Given a non-vanishing covariantly closed \mathbb{V}^n -valued differential (m-1)-form ϕ , there exists a local generalized isometric embedding of \mathbb{V}^n in $\mathcal{M}^m \times \mathbb{R}^{n+\kappa_{m,m-1}^n}$ over \mathcal{M}^m , where $\kappa_{m,m-1}^n \ge (m-1)(n-1)$ such that the image of ϕ is a conservation law.

Nabil Kahouadji, Ph.D.

Results

Results

Construction of local conservation laws by generalized isometric embedding of vector bundles, arXiv :0804.2608 (2010), to appear in Asian J. of Math.

Theorem $((\mathbb{V}^n, \mathcal{M}^m, \mathbf{g}, \nabla, \phi)_{m-1} \text{ case})$

Let \mathbb{V}^n be a real analytic n-dimensional vector bundle over a real analytic *m*-dimensional manifold \mathcal{M}^m endowed with a metric *g* and a connection ∇ compatible with *g*. Given a non-vanishing covariantly closed \mathbb{V}^n -valued differential (m-1)-form ϕ , there exists a local generalized isometric embedding of \mathbb{V}^n in $\mathcal{M}^m \times \mathbb{R}^{n+\kappa_{m,m-1}^n}$ over \mathcal{M}^m , where $\kappa_{m,m-1}^n \ge (m-1)(n-1)$ such that the image of ϕ is a conservation law.

Nabil Kahouadji, Ph.D.

Results

Results

Construction of local conservation laws by generalized isometric embedding of vector bundles, arXiv :0804.2608 (2010), to appear in Asian J. of Math.

Theorem $((\mathbb{V}^n, \mathcal{M}^m, \mathbf{g}, \nabla, \phi)_{m-1} \text{ case})$

Let \mathbb{V}^n be a real analytic n-dimensional vector bundle over a real analytic *m*-dimensional manifold \mathcal{M}^m endowed with a metric *g* and a connection ∇ compatible with *g*. Given a non-vanishing covariantly closed \mathbb{V}^n -valued differential (m-1)-form ϕ , there exists a local generalized isometric embedding of \mathbb{V}^n in $\mathcal{M}^m \times \mathbb{R}^{n+\kappa_{m,m-1}^n}$ over \mathcal{M}^m , where $\kappa_{m,m-1}^n \ge (m-1)(n-1)$ such that the image of ϕ is a conservation law.

Nabil Kahouadji, Ph.D.

Results

Results

Construction of local conservation laws by generalized isometric embedding of vector bundles, arXiv :0804.2608 (2010), to appear in Asian J. of Math.

Theorem $((\mathbb{V}^n, \mathcal{M}^m, \mathbf{g}, \nabla, \phi)_{m-1} \text{ case})$

Let \mathbb{V}^n be a real analytic n-dimensional vector bundle over a real analytic *m*-dimensional manifold \mathcal{M}^m endowed with a metric *g* and a connection ∇ compatible with *g*. Given a non-vanishing covariantly closed \mathbb{V}^n -valued differential (m-1)-form ϕ , there exists a local generalized isometric embedding of \mathbb{V}^n in $\mathcal{M}^m \times \mathbb{R}^{n+\kappa_{m,m-1}^n}$ over \mathcal{M}^m , where $\kappa_{m,m-1}^n \ge (m-1)(n-1)$ such that the image of ϕ is a conservation law.

Nabil Kahouadji, Ph.D.

イロト 不得 トイヨト イヨト ヨー ろくで

Results

Results

Nabil Kahouadji, Ph.D. Conservation Laws and Generalized Isometric Embeddings June 14, 2011 25 / 42

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Ų	McGil	1
F	Resu	lts

Corollary

Let (\mathcal{M}^m, g) be a real analytic m-dimensional Riemannian manifold,

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 25 / 42

イロト 不得 トイラト イラト 二日

Ų	McGil	1
F	Resu	lts

Corollary

Let (\mathcal{M}^m, g) be a real analytic m-dimensional Riemannian manifold, ∇ be the Levi-Civita connection

3

- 4 同 6 4 回 6 4 回 6

Ų	McG	ill
F	Resi	ilts

Corollary

Let (\mathcal{M}^m, g) be a real analytic m-dimensional Riemannian manifold, ∇ be the Levi-Civita connectionand T be a contravariant 2-tensor with a vanishing covariant divergence.

∃ ► < ∃ ►</p>

Ų	McG	ill
F	Resi	ilts

Corollary

Let (\mathcal{M}^m, g) be a real analytic m-dimensional Riemannian manifold, ∇ be the Levi-Civita connectionand T be a contravariant 2-tensor with a vanishing covariant divergence. Then there exists a local conservation law for T on $\mathcal{M}^m \times \mathbb{R}^{m+(m-1)^2}$.

ヨトィヨト

🕏 McGill	
Results	

Corollary

Let (\mathcal{M}^m, g) be a real analytic m-dimensional Riemannian manifold, ∇ be the Levi-Civita connectionand T be a contravariant 2-tensor with a vanishing covariant divergence. Then there exists a local conservation law for T on $\mathcal{M}^m \times \mathbb{R}^{m+(m-1)^2}$.

Application : m = 4 and T the stress-energy tensor.

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 25 / 42

当ち ときもい

Ų	McGil	u
F	Resu	lts

Corollary

Let (\mathcal{M}^m, g) be a real analytic m-dimensional Riemannian manifold, ∇ be the Levi-Civita connectionand T be a contravariant 2-tensor with a vanishing covariant divergence. Then there exists a local conservation law for T on $\mathcal{M}^m \times \mathbb{R}^{m+(m-1)^2}$.

Application : m = 4 and T the stress-energy tensor.

$$\Gamma(\mathrm{T}\mathcal{M}^m\otimes\mathrm{T}\mathcal{M}^m)\longrightarrow\Gamma(\mathrm{T}\mathcal{M}^m\otimes\wedge^{m-1}\mathrm{T}^*\mathcal{M}^m)$$
$$T\mapsto\tau$$

Nabil Kahouadji, Ph.D.

June 14, 2011 25 / 42

Ų	McGil	1
F	Resu	ts

Corollary

Let (\mathcal{M}^m, g) be a real analytic m-dimensional Riemannian manifold, ∇ be the Levi-Civita connectionand T be a contravariant 2-tensor with a vanishing covariant divergence. Then there exists a local conservation law for T on $\mathcal{M}^m \times \mathbb{R}^{m+(m-1)^2}$.

Application : m = 4 and T the stress-energy tensor.

$$\Gamma(\mathrm{T}\mathcal{M}^m\otimes\mathrm{T}\mathcal{M}^m)\longrightarrow \Gamma(\mathrm{T}\mathcal{M}^m\otimes\wedge^{m-1}\mathrm{T}^*\mathcal{M}^m)$$
$$T\mapsto \tau$$

$$\operatorname{div} T = \mathbf{0} \Longleftrightarrow \operatorname{d}_{\nabla} \tau = \mathbf{0}$$

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 25 / 42

Results

Results

Nabil Kahouadji, Ph.D. Conservation Laws and Generalized Isometric Embeddings June 14, 2011 26 / 42

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

Results

Results

Theorem (($\mathbb{V}^2, \mathcal{M}^m, \mathbf{g}, \nabla, \phi$)₁ case)

Let \mathbb{V}^2 be a real analytic 2-dimensional vector bundle over a real analytic *m*-dimensional manifold \mathcal{M}^m endowed with a metric *g* and a connection ∇ compatible with *g*. Given a non-vanishing covariantly closed non-degenerate \mathbb{V}^2 -valued differential 1-form ϕ , there exists a local generalized isometric embedding of \mathbb{V}^2 in $\mathcal{M}^m \times \mathbb{R}^{n+\kappa_{m,1}^2}$ over \mathcal{M}^m , where $\kappa_{m,m-1}^n \ge 1$ such that the image of ϕ is a conservation law.

Nabil Kahouadji, Ph.D.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Results

Results

Theorem (($\mathbb{V}^2, \mathcal{M}^m, \mathbf{g}, \nabla, \phi$)₁ case)

Let \mathbb{V}^2 be a real analytic 2-dimensional vector bundle over a real analytic *m*-dimensional manifold \mathcal{M}^m endowed with a metric *g* and a connection ∇ compatible with *g*. Given a non-vanishing covariantly closed non-degenerate \mathbb{V}^2 -valued differential 1-form ϕ , there exists a local generalized isometric embedding of \mathbb{V}^2 in $\mathcal{M}^m \times \mathbb{R}^{n+\kappa_{m,1}^2}$ over \mathcal{M}^m , where $\kappa_{m,m-1}^n \ge 1$ such that the image of ϕ is a conservation law.

Nabil Kahouadji, Ph.D.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Results

Results

Theorem (($\mathbb{V}^2, \mathcal{M}^m, \mathbf{g}, \nabla, \phi$)₁ case)

Let \mathbb{V}^2 be a real analytic 2-dimensional vector bundle over a real analytic *m*-dimensional manifold \mathcal{M}^m endowed with a metric *g* and a connection ∇ compatible with *g*. Given a non-vanishing covariantly closed non-degenerate \mathbb{V}^2 -valued differential 1-form ϕ , there exists a local generalized isometric embedding of \mathbb{V}^2 in $\mathcal{M}^m \times \mathbb{R}^{n+\kappa_{m,1}^2}$ over \mathcal{M}^m , where $\kappa_{m,m-1}^n \ge 1$ such that the image of ϕ is a conservation law.

Nabil Kahouadji, Ph.D.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Results

Results

Theorem (($\mathbb{V}^2, \mathcal{M}^m, \mathbf{g}, \nabla, \phi$)₁ case)

Let \mathbb{V}^2 be a real analytic 2-dimensional vector bundle over a real analytic *m*-dimensional manifold \mathcal{M}^m endowed with a metric *g* and a connection ∇ compatible with *g*. Given a non-vanishing covariantly closed non-degenerate \mathbb{V}^2 -valued differential 1-form ϕ , there exists a local generalized isometric embedding of \mathbb{V}^2 in $\mathcal{M}^m \times \mathbb{R}^{n+\kappa_{m,1}^2}$ over \mathcal{M}^m , where $\kappa_{m,m-1}^n \ge 1$ such that the image of ϕ is a conservation law.

Nabil Kahouadji, Ph.D.

マボト イラト イラト 一日

Results

Results

Nabil Kahouadji, Ph.D. Conservation Laws and Generalized Isometric Embeddings June 14, 2011 30 / 42

Results

Results

Theorem (($\mathbb{V}^3, \mathcal{M}^4, \mathbf{g}, \nabla, \phi$)₂ ASD case)

Let \mathcal{M}^4 be an oriented real analytic 4-dimensional manifold endowed with a metric (actually a conformal structure is enough). Consider a real analytic vector bundle \mathbb{V}^3 of rank 3 over \mathcal{M}^4 , endowed with a Riemannian metric g, g-compatible connection ∇ , and a anti-self-dual covariantly closed \mathbb{V}^3 -valued differential 2-form ϕ . There exists then a local generalized isometric embedding Ψ of \mathbb{V}^3 into $\mathcal{M}^4 \times \mathbb{R}^{3+\kappa^3_{4,2,ASD}}$, where $\kappa^3_{4,2,ASD} \ge 4$, such that $\Psi(\phi)$ is a local conservation law.

Nabil Kahouadji, Ph.D.

くほう くろう くろう しろ

Results

Results

Theorem (($\mathbb{V}^3, \mathcal{M}^4, \mathbf{g}, \nabla, \phi$)₂ ASD case)

Let \mathcal{M}^4 be an oriented real analytic 4-dimensional manifold endowed with a metric (actually a conformal structure is enough). Consider a real analytic vector bundle \mathbb{V}^3 of rank 3 over \mathcal{M}^4 , endowed with a Riemannian metric g, g-compatible connection ∇ , and an anti-self-dual covariantly closed \mathbb{V}^3 -valued differential 2-form ϕ . There exists then a local generalized isometric embedding Ψ of \mathbb{V}^3 into $\mathcal{M}^4 \times \mathbb{R}^{3+\kappa^3_{4,2,ASD}}$, where $\kappa^3_{4,2,ASD} \ge 4$, such that $\Psi(\phi)$ is a local conservation law.

Nabil Kahouadji, Ph.D.

くほう イヨン イヨン 二日

Results

Results

Theorem (($\mathbb{V}^3, \mathcal{M}^4, \mathbf{g}, \nabla, \phi$)₂ ASD case)

Let \mathcal{M}^4 be an oriented real analytic 4-dimensional manifold endowed with a metric (actually a conformal structure is enough). Consider a real analytic vector bundle \mathbb{V}^3 of rank 3 over \mathcal{M}^4 , endowed with a Riemannian metric g, g-compatible connection ∇ , and an anti-self-dual covariantly closed \mathbb{V}^3 -valued differential 2-form ϕ . There exists then a local generalized isometric embedding Ψ of \mathbb{V}^3 into $\mathcal{M}^4 \times \mathbb{R}^{3+\kappa^3_{4,2,ASD}}$, where $\kappa^3_{4,2,ASD} \ge 4$, such that $\Psi(\phi)$ is a local conservation law.

Nabil Kahouadji, Ph.D.

くほう イヨン イヨン 二日

Results

Results

Theorem (($\mathbb{V}^3, \mathcal{M}^4, \mathbf{g}, \nabla, \phi$)₂ ASD case)

Let \mathcal{M}^4 be an oriented real analytic 4-dimensional manifold endowed with a metric (actually a conformal structure is enough). Consider a real analytic vector bundle \mathbb{V}^3 of rank 3 over \mathcal{M}^4 , endowed with a Riemannian metric g, g-compatible connection ∇ , and an anti-self-dual covariantly closed \mathbb{V}^3 -valued differential 2-form ϕ . There exists then a local generalized isometric embedding Ψ of \mathbb{V}^3 into $\mathcal{M}^4 \times \mathbb{R}^{3+\kappa^3_{4,2,ASD}}$, where $\kappa^3_{4,2,ASD} \ge 4$, such that $\Psi(\phi)$ is a local conservation law.

Nabil Kahouadji, Ph.D.

くほう イヨン イヨン 二日

Results

Nabil Kahouadji, Ph.D. Conservation Laws and Generalized Isometric Embeddings June 14, 2011 34 / 42

・ロト・西ト・ヨト・ヨー うへで

Frédéric Hélein, *Manifolds obtained by soldering together points, lines, etc.* in Geometry, topology, quantum field theory and cosmology, C. Barbachoux, J. Kouneiher, F. Hélein, eds, collection Travaux en Cours (Physique-Mathématiques), Hermann 2009, p. 23–43. **arXiv :0904.4616.**

Frédéric Hélein, *Manifolds obtained by soldering together points, lines, etc.* in Geometry, topology, quantum field theory and cosmology, C. Barbachoux, J. Kouneiher, F. Hélein, eds, collection Travaux en Cours (Physique-Mathématiques), Hermann 2009, p. 23–43. **arXiv :0904.4616.**

Solving Strategy

Solving Strategy

Nabil Kahouadji, Ph.D. Conservation Laws and Generalized Isometric Embeddings June 14, 2011 36 / 42

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

Solving Strategy

Solving Strategy

$$\Psi^*(\omega^i_j) = \eta^i_j$$
 and $\Psi^*(\omega^a_i) \wedge \phi^i = 0$

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙ June 14, 2011

36 / 42

Solving Strategy

Solving Strategy

$$\Psi^*(\omega^i_j)=\eta^i_j$$
 and $\Psi^*(\omega^a_i)\wedge\phi^i=0$

On the product manifold

$$\Sigma_{m,p}^{n} = \mathcal{M}^{m} imes rac{SO(n + \kappa_{m,p}^{n})}{SO(\kappa_{m,p}^{n})}$$

the naive EDS is

$$\mathcal{I}_{m,p}^{n} = \{\omega_{j}^{i} - \eta_{j}^{i}, \omega_{i}^{a} \wedge \phi^{i}\}$$

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 36 / 42

イロト 不得 トイラト イラト 二日

® McGill Solving Strategy

The generalized isometric embedding EDS is

$$\mathcal{I}_{m,p}^{n} = \{\omega_{j}^{i} - \eta_{j}^{i}, \omega_{a}^{i} \wedge \omega_{j}^{a} + \Omega_{j}^{i}, \omega_{i}^{a} \wedge \phi^{i}\}$$

On the product manifold

$$\Sigma_{m,p}^{n} = \mathcal{M}^{m} \times \frac{SO(n + \kappa_{m,p}^{n})}{SO(\kappa_{m,p}^{n})}$$

where Ω is the curvature 2-form of $\nabla (\Omega_j^i = \mathrm{d}\eta_j^i + \eta_k^i \wedge \eta_j^k)$.

Nabil Kahouadji, Ph.D.

June 14, 2011 37 / 42

イロト 不得 トイヨト イヨト ヨー ろくで

Solving Strategy

Solving Strategy

Solving Strategy

Nabil Kahouadji, Ph.D. Conservation Laws and Generalized Isometric Embeddings June 14, 2011 38 / 42

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

Solving Strategy

Solving Strategy

The standard case is $(\mathrm{T}\mathcal{M}^{\textit{m}},\mathcal{M}^{\textit{m}},g,\nabla,\mathrm{Id}_{\mathrm{T}\mathcal{M}^{\textit{m}}})_{1}$

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 38

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

38 / 42

 Solving Strategy

The standard case is $(\mathrm{T}\mathcal{M}^{\textit{m}},\mathcal{M}^{\textit{m}},g,\nabla,\mathrm{Id}_{\mathrm{T}\mathcal{M}^{\textit{m}}})_{1}$

• Generalized torsion :

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 38 / 42
Solving Strategy

The standard case is $(\mathrm{T}\mathcal{M}^{\textit{m}},\mathcal{M}^{\textit{m}},g,\nabla,\mathrm{Id}_{\mathrm{T}\mathcal{M}^{\textit{m}}})_{1}$

• Generalized torsion : $\Theta = E_i \Theta^i := E_i (d\phi^i + \eta^i_i \wedge \phi^j).$

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 38

Solving Strategy

The standard case is $(\mathrm{T}\mathcal{M}^{\textit{m}},\mathcal{M}^{\textit{m}},g,\nabla,\mathrm{Id}_{\mathrm{T}\mathcal{M}^{\textit{m}}})_{1}$

- Generalized torsion : $\Theta = E_i \Theta^i := E_i (d\phi^i + \eta^i_j \wedge \phi^j).$
- Generalized Bianchi identities :

→ ■ ▶ ★ 目 ▶ ★ 目 ▶ ○ 目 ○ の Q @

Solving Strategy

The standard case is $(\mathrm{T}\mathcal{M}^{\textit{m}},\mathcal{M}^{\textit{m}},g,\nabla,\mathrm{Id}_{\mathrm{T}\mathcal{M}^{\textit{m}}})_1$

- Generalized torsion : $\Theta = E_i \Theta^i := E_i (d\phi^i + \eta^i_j \wedge \phi^j).$
- Generalized Bianchi identities : $\mathcal{B}_{m,p}^{n} := E_{i}(\Omega_{j}^{i} \wedge \phi^{j}) = 0.$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Solving Strategy

The standard case is $(\mathrm{T}\mathcal{M}^{\textit{m}},\mathcal{M}^{\textit{m}},g,\nabla,\mathrm{Id}_{\mathrm{T}\mathcal{M}^{\textit{m}}})_{1}$

- Generalized torsion : $\Theta = E_i \Theta^i := E_i (d\phi^i + \eta^i_j \wedge \phi^j).$
- Generalized Bianchi identities : $\mathcal{B}_{m,p}^{n} := E_{i}(\Omega_{j}^{i} \wedge \phi^{j}) = 0.$
- Generalized Riemann curvature tensors :

Nabil Kahouadji, Ph.D.

・ロト ・ 周 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・ りへで

Solving Strategy

The standard case is $(\mathrm{T}\mathcal{M}^{\textit{m}},\mathcal{M}^{\textit{m}},g,\nabla,\mathrm{Id}_{\mathrm{T}\mathcal{M}^{\textit{m}}})_1$

- Generalized torsion : $\Theta = E_i \Theta^i := E_i (d\phi^i + \eta^i_j \wedge \phi^j).$
- Generalized Bianchi identities : $\mathcal{B}_{m,p}^n := E_i(\Omega_j^i \wedge \phi^j) = 0.$
- Generalized Riemann curvature tensors :

$$\mathcal{K}^n_{m,p} := \{(\mathcal{R}^i_{j;\lambda\mu}) \in \wedge^2(\mathbb{R}^n) \otimes \wedge^2(\mathbb{R}^m) | \ \Omega^i_j \wedge \phi^j = 0, \forall i = 1 \ ext{to} \ n\}.$$

Nabil Kahouadji, Ph.D.

・ロト ・ 周 ト ・ ヨ ト ・ ヨ ト ・ ヨ ・ りへで

Solving Strategy

Solving Strategy

Nabil Kahouadji, Ph.D. Conservation Laws and Generalized Isometric Embeddings June 14, 2011 39 / 42

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

Solving Strategy

Solving Strategy

The prolongation process of $\mathcal{I}_{m,p}^n$ yields to :

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 39

Solving Strategy

Solving Strategy

The prolongation process of $\mathcal{I}^n_{m,p}$ yields to : $\omega^a_i=H^a_{i\lambda}\eta^\lambda$

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011

Solving Strategy

Solving Strategy

The prolongation process of $\mathcal{I}_{m,p}^n$ yields to : $\omega_i^a = H_{i\lambda}^a \eta^\lambda$ where $H_{i\lambda}^a \in \mathcal{W}_{m,m-1}^n \otimes \mathbb{R}^n \otimes \mathbb{R}^m$

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 39 / 42

Solving Strategy

Solving Strategy

The prolongation process of $\mathcal{I}_{m,p}^n$ yields to : $\omega_i^a = H_{i\lambda}^a \eta^{\lambda}$ where $H_{i\lambda}^a \in \mathcal{W}_{m,m-1}^n \otimes \mathbb{R}^n \otimes \mathbb{R}^m$ and $\mathcal{W}_{m,p}^n$ is a Euclidean space of dimension $\kappa_{m,p}^n$,

Solving Strategy

Solving Strategy

The prolongation process of $\mathcal{I}_{m,p}^n$ yields to : $\omega_i^a = H_{i\lambda}^a \eta^{\lambda}$ where $H_{i\lambda}^a \in \mathcal{W}_{m,m-1}^n \otimes \mathbb{R}^n \otimes \mathbb{R}^m$ and $\mathcal{W}_{m,p}^n$ is a Euclidean space of dimension $\kappa_{m,p}^n$, and

• Generalized Cartan Identities :

$$\sum_{\substack{\lambda = 1, \dots, m \\ 1 \leqslant \mu_1 < \dots < \mu_p \leqslant m}} H^a_{i\lambda} \psi^i_{\mu_1, \dots, \mu_p} = 0$$

Nabil Kahouadji, Ph.D.

Solving Strategy

Solving Strategy

The prolongation process of $\mathcal{I}_{m,p}^n$ yields to : $\omega_i^a = H_{i\lambda}^a \eta^{\lambda}$ where $H_{i\lambda}^a \in \mathcal{W}_{m,m-1}^n \otimes \mathbb{R}^n \otimes \mathbb{R}^m$ and $\mathcal{W}_{m,p}^n$ is a Euclidean space of dimension $\kappa_{m,p}^n$, and

• Generalized Cartan Identities :

$$\sum_{\substack{\lambda = 1, \dots, m \\ 1 \leqslant \mu_1 < \dots < \mu_p \leqslant m}} H^a_{i\lambda} \psi^i_{\mu_1, \dots, \mu_p} = 0$$

• Generalized Gauss Map :

$$(\mathcal{G}_{m,p}^n)_{j;\lambda\mu}^i:H_{i\lambda}.H_{j\mu}-H_{i\mu}.H_{j\lambda}=\mathcal{R}_{j;\lambda\mu}^i.$$

Nabil Kahouadji, Ph.D.

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● ◇ Q (>

Solving Strategy

Specialization For The Conservation Law Case : p = m - 1

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011

<□▶ < □▶ < □▶ < □▶ < □▶ = □ ○ ○ ○ ○

Solving Strategy

Specialization For The Conservation Law Case : p = m - 1

Lemma

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 4

イロト 不得 トイラト イラト 二日

Solving Strategy

Specialization For The Conservation Law Case : p = m - 1

Lemma

Let $\kappa_{m,m-1}^n \ge (m-1)(n-1)$.

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ = ● ● ●

Solving Strategy

Specialization For The Conservation Law Case : p = m - 1

Lemma

Let $\kappa_{m,m-1}^n \ge (m-1)(n-1)$. Let $\mathcal{H}_{m,m-1}^n(M) \subset \mathcal{W}_{m,m-1}^n \otimes \mathbb{R}^n \otimes \mathbb{R}^m$ be the open set consisting of those elements $H = (H_{i\lambda}^a)$ so that the vectors $\{H_{i\lambda} | i = 1, \dots, n-1 \text{ and } \lambda = 1, \dots, m-1\}$ are linearly independent as elements of $\mathcal{W}_{m,m-1}^n$

Nabil Kahouadji, Ph.D.

Solving Strategy

Specialization For The Conservation Law Case : p = m - 1

Lemma

Let $\kappa_{m,m-1}^n \ge (m-1)(n-1)$. Let $\mathcal{H}_{m,m-1}^n(M) \subset \mathcal{W}_{m,m-1}^n \otimes \mathbb{R}^n \otimes \mathbb{R}^m$ be the open set consisting of those elements $H = (H_{i\lambda}^a)$ so that the vectors $\{H_{i\lambda} | i = 1, ..., n-1 \text{ and } \lambda = 1, ..., m-1\}$ are linearly independent as elements of $\mathcal{W}_{m,m-1}^n$ and satisfy the generalized Cartan identities.

Nabil Kahouadji, Ph.D.

• • = • • = • = •

Solving Strategy

Specialization For The Conservation Law Case : p = m - 1

Lemma

Let $\kappa_{m,m-1}^n \ge (m-1)(n-1)$. Let $\mathcal{H}_{m,m-1}^n(M) \subset \mathcal{W}_{m,m-1}^n \otimes \mathbb{R}^n \otimes \mathbb{R}^m$ be the open set consisting of those elements $H = (H_{i\lambda}^a)$ so that the vectors $\{H_{i\lambda} | i = 1, ..., n-1 \text{ and } \lambda = 1, ..., m-1\}$ are linearly independent as elements of $\mathcal{W}_{m,m-1}^n$ and satisfy the generalized Cartan identities. Then $\mathcal{G}_{m,m-1}^n : \mathcal{H}_{m,m-1}^n \longrightarrow \mathcal{K}_{m,m-1}^n$

Nabil Kahouadji, Ph.D.

• • = • • = • = •

Solving Strategy

Specialization For The Conservation Law Case : p = m - 1

Lemma

Let $\kappa_{m,m-1}^n \ge (m-1)(n-1)$. Let $\mathcal{H}_{m,m-1}^n(M) \subset \mathcal{W}_{m,m-1}^n \otimes \mathbb{R}^n \otimes \mathbb{R}^m$ be the open set consisting of those elements $H = (H_{i\lambda}^a)$ so that the vectors $\{H_{i\lambda} | i = 1, ..., n-1 \text{ and } \lambda = 1, ..., m-1\}$ are linearly independent as elements of $\mathcal{W}_{m,m-1}^n$ and satisfy the generalized Cartan identities. Then $\mathcal{G}_{m,m-1}^n : \mathcal{H}_{m,m-1}^n \longrightarrow \mathcal{K}_{m,m-1}^n$ is a surjective submersion.

Nabil Kahouadji, Ph.D.

くぼう くほう くほう しほ

Perspectives

Perspectives

Nabil Kahouadji, Ph.D. Conservation Laws and Generalized Isometric Embeddings June 14, 2011 41 / 42

Perspectives

Perspectives

Global versions in the analytic category.

Nabil Kahouadji, Ph.D.

Conservation Laws and Generalized Isometric Embeddings

June 14, 2011 41

イロト 不得 トイラト イラト 二日

Perspectives

Perspectives

- Global versions in the analytic category.
- ② Local and/or global versions in the smooth category.

Nabil Kahouadji, Ph.D.

(人間) とうきょうきょうき

- Global versions in the analytic category.
- Output Local and/or global versions in the smooth category.
- Solving the problem for $p = 1, \ldots, m 2$.

- 4 目 ト 4 日 ト - 日 - シック

- Global versions in the analytic category.
- Output Description of the second s
- Solving the problem for $p = 1, \ldots, m 2$.
- Onderstanding possible geometric obstructions.

- 4月 - 4日 - 4日 - 日 - のへの

- Global versions in the analytic category.
- Output Description of the second s
- Solving the problem for $p = 1, \ldots, m 2$.
- 9 Understanding possible geometric obstructions.
- Studying the rigidity of the generalized isometric immersions.

Nabil Kahouadji, Ph.D.

- Global versions in the analytic category.
- Output Description of the second s
- Solving the problem for $p = 1, \ldots, m 2$.
- Onderstanding possible geometric obstructions.
- Studying the rigidity of the generalized isometric immersions.
- Studying the problem for a structural group $G \subset O(n)$.

Nabil Kahouadji, Ph.D.

Thank you very much for your attention Merci infiniment de votre attention

June 14, 2011 42 / 42

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ