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Motivating Example: The Weierstrass Representation
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The EDS I on F for minimal surfaces is generated by ω3 and

ω3
1 ∧ ω1 + ω3

2 ∧ ω2 = Re(ψ ∧ η)

ω3
1 ∧ ω2 − ω3

2 ∧ ω1 = Im(ψ ∧ η)
where

ψ := ω3
1 − iω3

2,

η := ω1 + iω2.

Form ψ drops (up to multiple) to S2 to generate (1, 0)-forms for the
complex structure; thus, the Gauss map is holomorphic.

Conversely: let Σ2 be an abstract Riemann surface with local
coordinate z, and w = g(z) a map to C ⊂ S2. Then an integral of I is
constructed by choosing a second holomorphic function f (z) such that
η = f (z) dz, then integrating dX = (e1 − ie2)η, giving

X(z) = Re
∫

(1− g2, i(1 + g2), 2g) f dz.
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General Picture

Let N be a Riemannian manifold, I an EDS on the bundle B (usually
a frame bundle, possibly with extra variables) whose integrals
correspond to a special class of submanifold M ⊂ N.

(B, I)
�

��	
NM ↪→

(Q,K)

@
@@R
π

← Σ
holo

or wave

Rk × Σ, where k ≥ 0�

?

We seek a system K defined on a quotient manifold Q, such that
–integrals of K are easily obtained (e.g., via C-R or wave eqns.)
–integrals of K can be lifted to integrals of I
(optimal scenario: I is an integrable extension of K)

Idea: Look for smaller systems inside I whose generators are
semibasic for π, and which drops to the ‘twistor space’ Q.
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Excuses for Terminology

Twistor spaces for harmonic mappings (Eels-Salamon):

F
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Here, F is the orthonormal frame bundle of Riem. mfld. N, and Q is
the bundle of orthogonal complex structures on N.

Twistor spaces for instantons on Minkowski space (Penrose):

F
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@
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Gr(2,C4) CP3

Here, Gr(2,C4) is compactified complexified Minkowski space and F
is a flag manifold.



Excuses for Terminology

Twistor spaces for harmonic mappings (Eels-Salamon):

F

?

@
@R Q
�
�	MnM2 -

harm

��
��

��1
holo

Here, F is the orthonormal frame bundle of Riem. mfld. N, and Q is
the bundle of orthogonal complex structures on N.

Twistor spaces for instantons on Minkowski space (Penrose):

F
�

��	

@
@@R

Gr(2,C4) CP3

Here, Gr(2,C4) is compactified complexified Minkowski space and F
is a flag manifold.



Excuses for Terminology

Twistor spaces for harmonic mappings (Eels-Salamon):

F

?

@
@R Q
�
�	MnM2 -

harm

��
��

��1
holo

Here, F is the orthonormal frame bundle of Riem. mfld. N, and Q is
the bundle of orthogonal complex structures on N.

Twistor spaces for instantons on Minkowski space (Penrose):

F
�

��	

@
@@R

Gr(2,C4) CP3

Here, Gr(2,C4) is compactified complexified Minkowski space and F
is a flag manifold.



Dropping Lemma

Lemma Let π : B→ Q be a fibration, let V ⊂ T∗M be the bundle of
semibasic forms and let I ⊂ V generate a Pfaffian system I on B.
There is a well-defined Pfaffian system K on Q such that
ψ ∈ K whenever π∗ψ ∈ I, iff the Cartan system C(I) ⊂ V .

In other words, for every section θ of I,

dθ ≡ 0 mod I,Λ2V.

–carries over to complex Pfaffian systems I ⊂ T∗M ⊗ C
–generalizes to any bundle I ⊂ ΛkV of k-forms semibasic for π
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Example: Superminimal surfaces in S4 (Bryant 1982)

F( F × C, I)
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@@R

?
S4 ∼= HP1

CP3

M2 ↪→

← Σ2
holo.

contact

���

Here, F = Sp(2) 2:1← SO(5) and CP3 = Sp(2)/U(2).
Adapting frames along minimal M such that e1, e2 are tangent, we get

ψa = Haη, for some Ha ∈ C, a = 3, 4

where η := ω1 + iω2 and ψa := ωa
1 − iωa

2 . Then

Φ =
(
(H3)2 + (H4)2) (η)4

is a well-defined holomorphic quartic form on M, vanishing when M
is superminimal. Assume H3 = iH4, so that M gives an integral of
1-form ψ3 − iψ4. This form drops to CP3 to define a holomorphic
contact system K, of which I is an integrable extension.
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Example: Ruled Austere 4-folds in En

M ⊂ En is austere if its second fund. form II has eigenvalues
balanced around zero, in all normal directions ν:

ν · II =


λ1 0 0 0 . . .
0 −λ1 0 0 . . .
0 0 λ2 0 . . .
0 0 0 −λ2 . . .
...

. . .


M4 is circular austere if II(JX,Y) = II(X, JY) for an orthogonal
complex structure J on M.

Problem: Classify circular M4’s that are ruled by J-closed 2-planes.
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Constructing Ruled Austere 4-folds in Rn

Assume M is substantial in En, n ≥ 6, and let γ : M → Gr(2,Rn) be
the rank 2 holomorphic map taking p ∈ M to the ruling plane Ep.

Thm (Ionel & I) For each p ∈ M there is a 6-dimensional subspace
Fp ⊂ Rn, such that TpM ⊂ Fp, and an orthogonal complex structure
Jp on Fp (extending J) such that, for all X ∈ TpM

γ∗(X) ∈ E∗p ⊗ (Fp/Ep) ⊂ TEp Gr(2,Rn)

γ∗(X) is J-linear

}
‘contact condition’.

Let Q = SO(n)/SO(2)× U(2)× SO(n− 6) be the space of triples
(E,F, J). Then we can locally reconstruct M from the image of the
rank 2 holomorphic map Γ : p 7→ (Ep,Fp, Jp).

Fon × Rk

@
@R

�
��	

M4 ↪→En Q
�

.
.......................

........
.............................

.
.............................. ............................. ............................ ............................ .............................

..............................
..............................

...............................Γ
� Σ2

holo.
contact

Q
Q

QQk solve PDE
(Q,K)
�
��	

@
@@R

Gr(2,Rn) SO(n)
U(3)× SO(n− 6)
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Darboux Plays Twistor

Recall that a hyperbolic EDS I of class k is Darboux-integrable if its
characteristic systemsM1,M2 each contain independent Frobenius
systems F1,F2 of rank (at least) two.

Assume that the leaf spaces of F1 and F2 are smooth manifolds
Q1,Q2. Then any integral manifold of I maps to a curve in each leaf
space. (These curves may or may not be arbitrary.)

Define a product “twistor space” Q = Q1 × Q2, and determine how to
lift pairs of curves to integrals of I.
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Example: Flat Surfaces in S3

F

S3

e0�
��	

M2 ↪→

@
@@R
π

Q = S2 × S2 � Σ
product

The EDS I on F ∼= SO(4) for flat surfaces is generated by ω3 and

ω3
1 ∧ ω1 + ω3

2 ∧ ω2

ω3
1 ∧ ω3

2 + ω1 ∧ ω2 ⇐⇒
Ω1 := (ω3

1 + ω2) ∧ (ω3
2 − ω1)

Ω2 := (ω3
1 − ω2) ∧ (ω3

2 + ω1)

Characteristic systems contain Frobenius systems

F1 = {ω3
1 + ω2, ω3

2 − ω1}, F2 = {ω3
1 − ω2, ω3

2 + ω1}
The quotient by the leaves of either foliation is a sphere, and the
projection of any integral surface is a curve in S2.

Given a product embedding of Σ = R× R into Q, the pullback of I
to π−1(Σ) is Frobenius.
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Hopf Hypersurfaces in CHn (holo. sectional curvature −1/r2)

In a complex space form, a hypersurface is Hopf if J times the unit
normal is principal (principal curvature α is necessarily constant).
Consider hypersurfaces in CHn for which |α| < 1/r.

F
�

��	
CHnM2n−1 ↪→

@
@@R

Q = S2n−1 × S2n−1 � Σ2n−2
product
contact

The EDS I on unitary frame bundle F is generated algebraically by a
1-form and two 2-forms of rank 2n-2:

Ω± =
n−1∑
j=1

ψ2j−1
± ∧ ψ2j

±.

Each characteristic system contains a Frobenius system of rank
2n− 1, and a contact form which drops to the quotient S2n−1.
Given a product embedding of contact submanifolds into Q, the
inverse image is an integral of I.



Hopf Hypersurfaces in CHn (holo. sectional curvature −1/r2)

In a complex space form, a hypersurface is Hopf if J times the unit
normal is principal (principal curvature α is necessarily constant).

Consider hypersurfaces in CHn for which |α| < 1/r.

F
�

��	
CHnM2n−1 ↪→

@
@@R

Q = S2n−1 × S2n−1 � Σ2n−2
product
contact

The EDS I on unitary frame bundle F is generated algebraically by a
1-form and two 2-forms of rank 2n-2:

Ω± =
n−1∑
j=1

ψ2j−1
± ∧ ψ2j

±.

Each characteristic system contains a Frobenius system of rank
2n− 1, and a contact form which drops to the quotient S2n−1.
Given a product embedding of contact submanifolds into Q, the
inverse image is an integral of I.



Hopf Hypersurfaces in CHn (holo. sectional curvature −1/r2)

In a complex space form, a hypersurface is Hopf if J times the unit
normal is principal (principal curvature α is necessarily constant).
Consider hypersurfaces in CHn for which |α| < 1/r.

F
�

��	
CHnM2n−1 ↪→

@
@@R

Q = S2n−1 × S2n−1 � Σ2n−2
product
contact

The EDS I on unitary frame bundle F is generated algebraically by a
1-form and two 2-forms of rank 2n-2:

Ω± =
n−1∑
j=1

ψ2j−1
± ∧ ψ2j

±.

Each characteristic system contains a Frobenius system of rank
2n− 1, and a contact form which drops to the quotient S2n−1.
Given a product embedding of contact submanifolds into Q, the
inverse image is an integral of I.



Hopf Hypersurfaces in CHn (holo. sectional curvature −1/r2)

In a complex space form, a hypersurface is Hopf if J times the unit
normal is principal (principal curvature α is necessarily constant).
Consider hypersurfaces in CHn for which |α| < 1/r.

F
�

��	
CHnM2n−1 ↪→

@
@@R

Q = S2n−1 × S2n−1 � Σ2n−2
product
contact

The EDS I on unitary frame bundle F is generated algebraically by a
1-form and two 2-forms of rank 2n-2:

Ω± =
n−1∑
j=1

ψ2j−1
± ∧ ψ2j

±.

Each characteristic system contains a Frobenius system of rank
2n− 1, and a contact form which drops to the quotient S2n−1.
Given a product embedding of contact submanifolds into Q, the
inverse image is an integral of I.



Hopf Hypersurfaces in CHn (holo. sectional curvature −1/r2)

In a complex space form, a hypersurface is Hopf if J times the unit
normal is principal (principal curvature α is necessarily constant).
Consider hypersurfaces in CHn for which |α| < 1/r.

F
�

��	
CHnM2n−1 ↪→

@
@@R

Q = S2n−1 × S2n−1

� Σ2n−2
product
contact

The EDS I on unitary frame bundle F is generated algebraically by a
1-form and two 2-forms of rank 2n-2:

Ω± =
n−1∑
j=1

ψ2j−1
± ∧ ψ2j

±.

Each characteristic system contains a Frobenius system of rank
2n− 1, and a contact form which drops to the quotient S2n−1.

Given a product embedding of contact submanifolds into Q, the
inverse image is an integral of I.



Hopf Hypersurfaces in CHn (holo. sectional curvature −1/r2)

In a complex space form, a hypersurface is Hopf if J times the unit
normal is principal (principal curvature α is necessarily constant).
Consider hypersurfaces in CHn for which |α| < 1/r.

F
�

��	
CHnM2n−1 ↪→

@
@@R

Q = S2n−1 × S2n−1 � Σ2n−2
product
contact

The EDS I on unitary frame bundle F is generated algebraically by a
1-form and two 2-forms of rank 2n-2:

Ω± =
n−1∑
j=1

ψ2j−1
± ∧ ψ2j

±.

Each characteristic system contains a Frobenius system of rank
2n− 1, and a contact form which drops to the quotient S2n−1.
Given a product embedding of contact submanifolds into Q, the
inverse image is an integral of I.



Last Slide!

Applications These twistor spaces have been used to
–determine topology (Bryant) and moduli spaces (Chi) of
superminimal surfaces in S4

–solve Cauchy problems for flat M2 ⊂ S3 (Aledo-Gálvez-Mira)
–construct nonhomogeneous examples of complete Hopf
hypersurfaces (I-Ryan)

Questions
.Can we determine the topology of complete ruled austere 4-folds in
R6,R7, . . .?
.For a given symmetric space G/H, can we classify homogeneous
EDS’s I on G that admit “useful” twistor spaces?
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