On Ribaucour transformations for surfaces

K. Tenenblat

Universidade de Brasília

Centre de Recherches Mathematiques, June 2011

Workshop on Moving Frames in Geometry

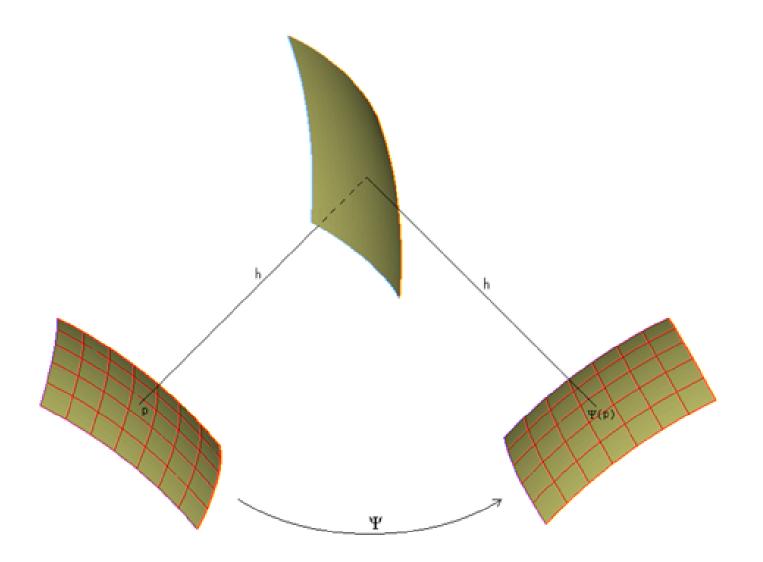
Ribaucour Transfomations (Classical definition) M, \tilde{M} surfaces in $\bar{M}^3(k)$ without umbilic points, $\psi: M \to \tilde{M}$ diffeomorfism such that: **a)** $\exp_p h(p)N(p) = \exp_{\psi(p)}h(p)\tilde{N}(\psi(p)), \forall p \in M$; **b)** $M_0 = \{\exp_p h(p)N(p) | p \in M\}$ is a surface in \overline{M} ; **c)** ψ preserves lines of curvature.

a) can be rewritten as

$$p+h(p)N(p) = \psi(p) + h(p)\tilde{N}(\psi(p)), p \in M, \text{ if } k = 0,$$

and

$$h(p) = \begin{cases} \tan(\phi(p)), & \phi: M \to \left(0, \frac{\pi}{2}\right), & \text{if } k = 1, \\ \tanh(\phi(p)), & \phi: M \to \mathbb{R}, & \text{if } k = -1. \end{cases}$$



Ribaucour transformation in $I\!\!R^3$

Remarks

- We only need the existence of an orthonormal frame of principal directions e_1, e_2 on M.
- Require $d\psi(e_1)$ and $d\psi(e_2)$ to be orthogonal principal directions on \tilde{M} .
- Higher dimensional generalization of RT, Corro ____ (2004).
- The hypersurfaces \tilde{M} may differ according to the chosen frame (when the principal curvatures of M have multiplicity > 1).

- Ribaucour transformations (RT) between surfaces of constant Gaussian curvature, cmc or minimal surfaces were known since 1918 (Ribaucour, Bianchi).
- First examples of minimal surfaces using RT were obtained by Corro, Ferreira, ____, 2003.
- RT were extended to linear Weingarten (LW) surfaces in \mathbb{R}^3 by Corro, Ferreira, ____, 2003) and in space forms by ____, Wang (2006).
- These results provided an extension and a unified version of the classical results. We obtained several applications and geometric properties of RT.
- This talk is a survey of some results (2003 2011).

Remarks:

- **M** may be locally associated to M by a Ribaucour transformation.
- We consider the hyperbolic three space as the submanifold of L⁴

$$I\!\!H^3 = \{ x \in I\!\!L^4 | < x, x > = -1 \}$$

with two connected components.

• A Ribaucour transformation is equivalent to solving a nonlinear PDE for *h*. This equation can be reduced to a linear system of diff. equations by considering $h = \Omega/W$. A characterization of Ribaucour transformations in $\overline{M}^{3}(k)$

<u>Theorem A</u>. Let $M \subset \overline{M}^3(k)$ be a surface which admits an o.n. frame e_1, e_2 of principal directions. A surface \widetilde{M} is locally assoc. to M, by a Ribaucour transf. $\iff h = \frac{\Omega}{W}$ where Ω and $W \neq 0$ satisfy

$$d\Omega = \sum_{i=1}^{2} \Omega_i \omega_i,$$

 $dW = \sum_{i=1}^{2} \Omega_i \omega_{i3},$
 $d\Omega_i(e_j) = \Omega_j \omega_{ij}(e_j), \ i \neq j.$

If X is a local parametrization of M then \tilde{M} is parametrized by

$$\tilde{X} = \left(1 - \frac{2k\Omega^2}{S}\right) X - \frac{2\Omega}{S} \left(\nabla\Omega - W e_3\right) \quad \text{where } S = \sum_{j=1}^2 (\Omega_j)^2 + W^2 + k\Omega^2$$

Linear Weingarten (LW) surfaces in $\overline{M}^{3}(k)$

 $\alpha + \beta H + \gamma (K - k) = 0, \qquad \alpha, \beta, \gamma \in R$

H and *K* are the mean and Gaussian curvatures.

We say it is hyperbolic when $\Delta := \beta^2 - 4\alpha\gamma < 0$ eliptic when $\Delta > 0$ $\Delta = 0$ characterizes the tubular surfaces.

In particular a surface is: hyperbolic when K - k = -1eliptic when K - k = 1, cmc or minimal.

Ribaucour transformations for LW surfaces (Corro, Ferreira, ____, Wang)

<u>Theorem B.</u> Let *M* and \tilde{M} be regular surfaces in $\bar{M}^3(k)$ associated by a Ribaucour transformation. If Ω_i , Ω and *W* satisfy the additional condition

$$S = 2c(\alpha \Omega^2 + \beta \Omega W + \gamma W^2)$$

 $c \neq 0$, α , β , γ are real numbers and $S = \Omega_1^2 + \Omega_2^2 + W^2 + k\Omega^2$. Then

$$\widetilde{M}$$
 satisfies $\alpha + \beta \widetilde{H} + \gamma(\widetilde{K} - k) = 0$,
 $\widehat{\downarrow}$
M satisfies $\alpha + \beta H + \gamma(K - k) = 0$.

Special Cases

• cmc H surfaces

$$\alpha = -H \neq 0, \quad \beta = 1, \quad \gamma = 0$$

the algebraic condition reduces to

$$S = 2c\Omega(-\mathbf{H}\Omega + \mathbf{W}),$$

and c must satisfy c(c-2H) - k > 0.

• Minimal surfaces

$$\alpha = 0, \quad \beta = 1, \quad \gamma = 0$$

the algebraic condition reduces to

$$S = 2c\Omega W.$$

Let $M \subset \overline{M}^3(k)$ be LW surface.

Let e_1 and e_2 be an o.n. frame of principal directions.

If *M* satisfies $\alpha + \beta H + \gamma (K - k)$ then the RT is the integrable system:

$$d\Omega = \sum_{i=1}^{2} \Omega_{i} \omega_{i},$$

$$dW = \sum_{i=1}^{2} \Omega_{i} \omega_{i3},$$

$$d\Omega_{i} = \Omega_{j} \omega_{ij} + \{(2c\alpha - k)\Omega - \beta cW\} \omega_{i} + \{c\beta\Omega + (2c\gamma - 1)W\} \omega_{i3}, i \neq j.$$

with initial condition satisfying

$$\Omega_1^2 + \Omega_2^2 + W^2 + k\Omega^2 = 2c(\alpha\Omega^2 + \beta\Omega W + \gamma W^2),$$

• Generically we get a three parameter family of surfaces.

Embedded planar ends in \mathbb{R}^3 .

<u>Theorem</u>. (Corro, Ferreira, ____) Consider $\widetilde{X} : D \setminus \{p_0\} \to R^3$, $X : D \to R^3$ minimal surfaces, locally assoc. by a RT such that Ω and W are defined on D. If $S(p_0) = 0$, $\Omega(p_0) \neq 0$ and $S(p) \neq 0$, $\forall p \in D \setminus \{p_0\}$,

(*a*) for any divergent curve $\gamma : [0,1) \to D \setminus \{p_0\}$ such that $\lim_{t \to 1} \gamma(t) = p_0$ the length of $\widetilde{X}(\gamma)$ is infinite.

(b) \widetilde{X} has an embedded planar end at p_0 , and $\lim_{p\to p_0} \widetilde{N}(p) = N(p_0)$.

Proposition. (Corro, Ferreira, _____) Consider the catenoid parametrized by

 $\mathbf{X}(\mathbf{u_1},\mathbf{u_2}) = (\cos \mathbf{u_2} \cosh \mathbf{u_1}, \sin \mathbf{u_2} \cosh \mathbf{u_1}, \mathbf{u_1})$

Up to rigid motions of \mathbb{R}^3 , a parametrized surface \tilde{X}_c is a minimal surface, locally associated to X by a Ribaucour transformation as in Theorem B \iff

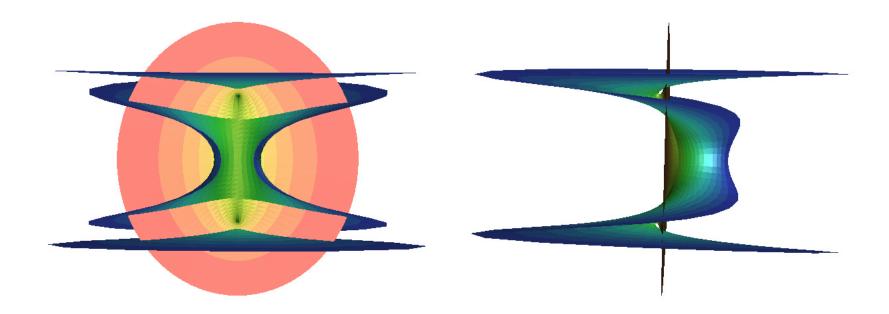
$$\tilde{X}_{c} = X - \frac{\cosh u_{1}}{c} (\cos u_{2}, \sin u_{2}, 0) + \frac{1}{c(f+g)} (f'X_{u_{1}} - g'X_{u_{2}})$$

where $c \neq 0, \, f(u_1)$ and $g(u_2)$ satisfy

$$f'' + (2c - 1)f = g'' - (2c - 1)g = 0$$

and the initial conditions satisfy

$$(f')^2 + (g')^2 + (2c-1)(f^2 - g^2) = 0.$$



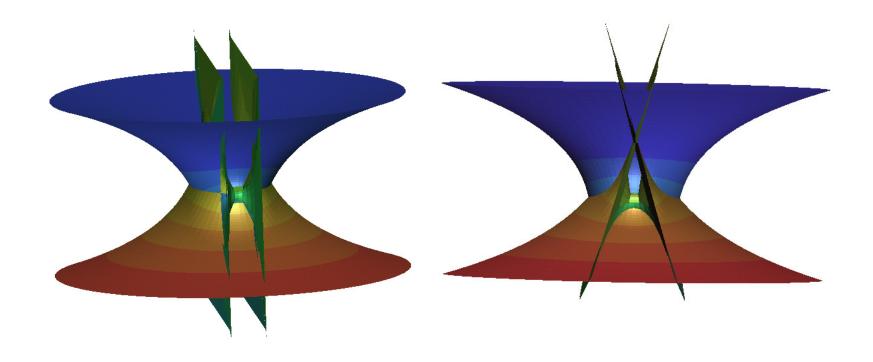
c = 1/2, a family of complete minimal surfaces of genus zero and two ends. Each surface has one embedded planar end. The other end wraps around the catenoid infinitely many times. For $c \neq 0$, c < 1/2 and $\sqrt{1-2c} = n/m$ is an irreducible rational numbers, $n \neq m$.

- We obtain a family of complete minimal surfaces modelled on a sphere punctured at n+2 points, which depends on a parameter A.
- It has **n** embedded planar ends and 2 nonplanar ends of geometric index **m**.
- The total curvature is $-4\pi(n+m)$.
- The parameter *A* affects the direction of the planar ends.

When c > 1/2 or $0 \neq c < 1/2$ and $\sqrt{1-2c} \notin Q$:

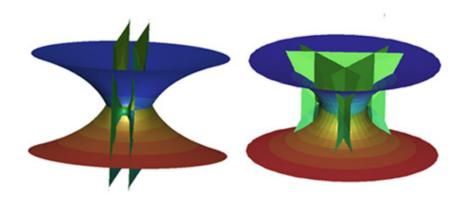
- We obtain a family of complete minimal surfaces that correspond to immersions of a sphere punctured at infinitely many points, which depends on a parameter *A*.
- Each surface has infinitely many planar ends
- It is not periodic in any variable.
- It has infinite total curvature.

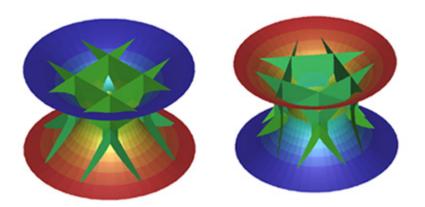
RT wer also applied to the **Bonnet family**. They are minimal surfaces in *R*³ that contain the Enneper surface and the catenoid. (Lemes,____)



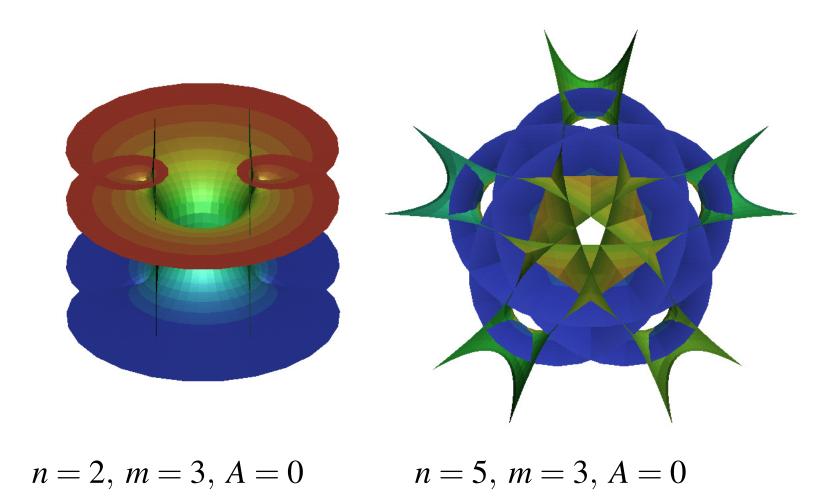
n = 2, m = 1, A = 0 n = 2, m = 1, A = 1/2

Complete minimal surfaces associated to the catenoid

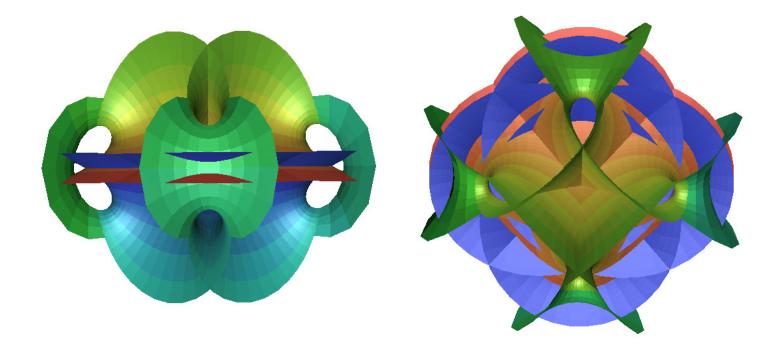




Complete minimal surf. with n = 2, n = 3, n = 4, n = 5 and m = 1.



Complete minimal surfaces associated to the catenoid by RT



Complete minimal surface associated to the catenoid n = 4 and

m = 3

LW surfaces associated to the cylinder

Proposition (Corro, Ferreira, _____) Consider the cylinder $X(u_1,u_2) = (\cos(u_2),\sin(u_2),u_1)$

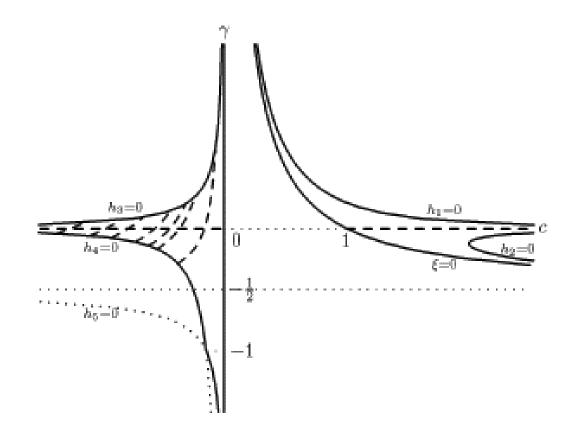
as a LW surface $-1/2 + H + \gamma K = 0$. The surfaces locally associated to X by a Ribaucour transformation, as in Theorem B, satisfy $-1/2 + \tilde{H} + \gamma \tilde{K} = 0$ and they are given by

$$\tilde{\mathbf{X}}_{c\gamma} = \mathbf{X} - \frac{2(\mathbf{f} + \mathbf{g})}{c[(2\gamma + 1)\mathbf{g}^2 - \mathbf{f}^2]}(\mathbf{f}'\mathbf{X}_{u_1} + \mathbf{g}'\mathbf{X}_{u_2} - \mathbf{gN})$$

where $c \neq 0, \, \gamma \in R, \, f(u_1), \, g(u_2)$ are solutions of

$$\mathbf{f}'' + \mathbf{c}\mathbf{f} = \mathbf{0}, \qquad \mathbf{g}'' + \xi \mathbf{g} = \mathbf{0}$$
$$\xi(\mathbf{c}, \gamma) = \mathbf{1} - \mathbf{c}(2\gamma + 1)$$

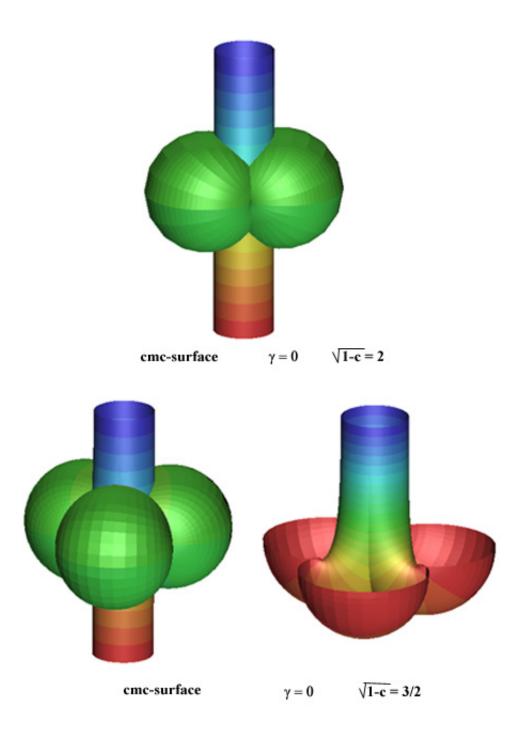
c and ξ are not simultaneously positive.

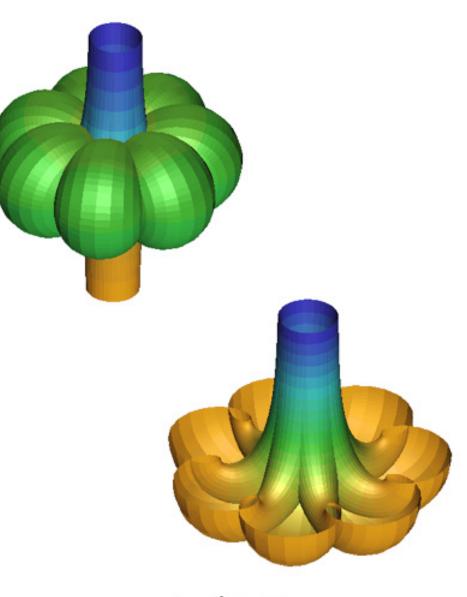


- $\tilde{\mathbf{X}}_{\mathbf{c}\gamma}$ is complete when (\mathbf{c}, γ) is in one of the two regions.
- $\tilde{\mathbf{X}}_{\mathbf{c}\mathbf{0}}$ are cmc surfaces ($\gamma = \mathbf{0}$).
- On the dashed curves on the left $\xi = 1 c(2\gamma + 1) = \frac{n^2}{m^2}, \quad \frac{n}{m} \in Q.$

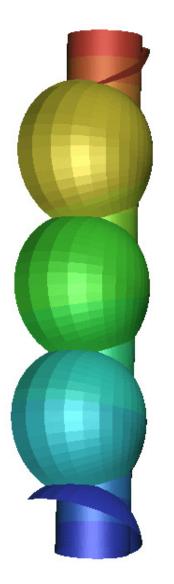
$$\gamma = 0$$

- For each c < 0 such that $\sqrt{1-c} = \frac{n}{m} \in Q$ irreducible, the surface is periodic in one variable.
- It has *n* bubbles and two ends asymptotic to the cylinder with geometric index *m*.
- For other values of *c* the cmc*H* surface is not periodic in any variable. The surface has one end and infinitely many bubbles.

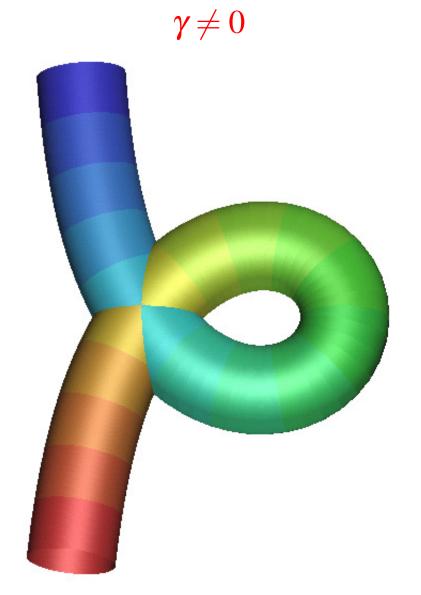




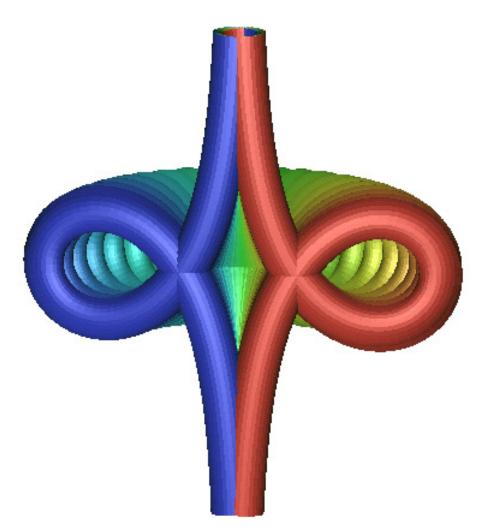
cmc-surface $\sqrt{1-c} = 7/6$



Complete cmc1/2 surface, c = 2.8. Infinite number of bubbles

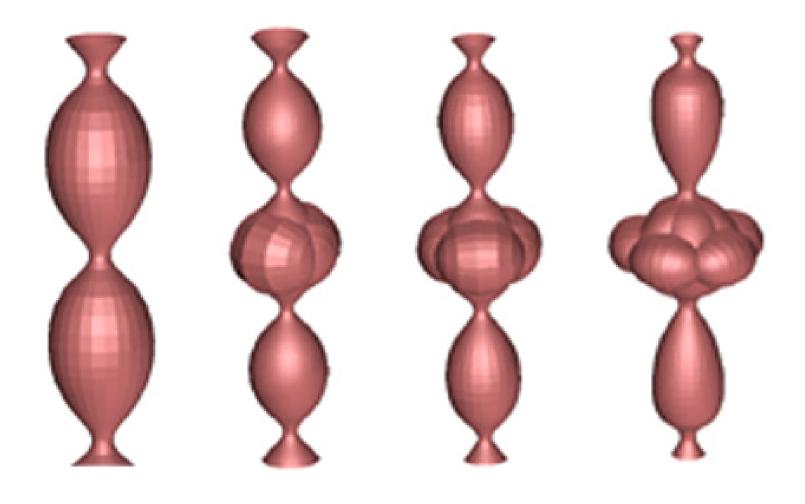


Complete LW surface (tubular) $\gamma = -1/2$, c = -0.1.



Partial view of a complete hyperbolic LW surface $\gamma = -1$ Sine-Gordon equation.

Ribaucour transformations of the Delaunay surface



- **DPW method** (1998) loop group theory, loop parameter in *C*.
- Burstall (2006): for cmc surfaces in \mathbb{R}^3 , the simple type dressing for real and pure imaginary parameters are equivalent to Darboux transformations (conformal RT).
- Hetrich-Jeromin-Pedit (1997): Bianchi-Backlund transformation of a cmc surface in \mathbb{R}^3 is a Darboux transformation. The converse does not hold.
- Kobayashi (2008): for a round cylinder in \mathbb{R}^3 , Bianchi-Backlund
 - \equiv simple type dressing \equiv Darboux transformation.

- Kobayashi, using the DPW method, constructed cylinder bubbletons cmc1 in IH³ and cmc0 in S³. Schmitt used the CM-CLab software.
- The existence of cmc surfaces with *n* bubbles was proved by Groβe-Bauckmann 1993 and Sterling-Wente 1993.
- The families of cmc surfaces visualized in our papers obtained by using **RT**, are given by explicit parametrizations.

M. Lemes, P. Roitman, _____ and R. Tribuzy *Transactions AMS (to appear)*

In general, a **RT between LW surfaces**, given by Theorem B, is not a Darboux transformation, i.e it is not conformal.

<u>Theorem.</u> Let *M* and \tilde{M} be LW surfaces in $\overline{M}^3(k)$ associated by a Ribaucour transformation as in Theorem B. Then the transformation is conformal

⚠

M and \tilde{M} have the same constant mean curvature.

Embedded ends of horosphere type in \mathbb{H}^3 **.**

<u>Theorem</u>. Let $X : D \subset \mathbb{R}^2 \to \mathbb{H}^3$ and $\widetilde{X} : D \setminus \{p_0\} \subset \mathbb{R}^2 \to \mathbb{H}^3$ be cmc1 surfaces, locally associated by a Ribaucour transformation. Let \widetilde{G} and G be the hyperbolic Gauss maps of \widetilde{X} and X, respectively. Assume that Ω_i , Ω and W are defined on D. If $S(p_0) = 0$, $\Omega(p_0) \neq 0$ and $S(p) \neq 0$ for all $p \in D \setminus \{p_0\}$ $\downarrow \downarrow$

• $\lim_{p\to p_0} \widetilde{G}(p) = G(p_0).$

• \widetilde{X} has an embedded horosphere type end at p_0 ,

Remarks

- Mathematicians have been very successful in constructing new complete minimal and constant mean curvature surfaces, by using different techniques.
- Lawson correspondence associates isometric surfaces of distinct cmc surfaces in appropriate space forms.
- We will relate Lawson correspondence to RT.

Lawson correspondence

Consider a simply connected cmc*H* surface $M \subset \overline{M}^3(k)$, with induced metric *I* and shape operator *A*.

Let $H' \in \mathbb{R}$, $H' \neq H$. Define A' := A + (H' - H)Id. The pair I, A' satisfies the Gauss and Codazzi equations for a surface $M' \subset \overline{M}'(k')$.

M' is isometric to M, it has constant mean curvature H' and

$$k' = k + H^2 - (H')^2.$$

We say that *M* and *M'* are related by the Lawson correspondence

When *M* is a minimal surface, *M'* is also referred to as a cmc cousin of *M*.

Commutativity Theorem

<u>Theorem</u> Lawson correspondence commutes with Darboux transformation (or Ribaucour transformation for surfaces of the same constant mean curvature). Let *M* and *M'* be cmc*H* and cmc*H'* surfaces respectively. $H' \neq H$. $k' + (H')^2 = k + H^2$. Lawson $M \subset \overline{M}^3(k) \longrightarrow M' \subset \overline{M}^3(k')$ *Ribaucour*(c) $\downarrow \qquad \qquad \downarrow \qquad Ribaucour(c')$ $\tilde{M} \subset \overline{M}^3(k) \longrightarrow \tilde{M}' \subset \overline{M}^3(k')$

 $c \neq 0$, $c' \neq 0$.

Verify commutativity considering

$$c' = c + H' - H$$
 $\Omega' = \Omega$, $W' = W + (H' - H)\Omega$.

<u>Corollary</u>. Let $X : U \subset \mathbb{R}^2 \to \overline{M}^3(k)$ and $X' : U \to \overline{M}^3(k')$ be immersions related by the Lawson correspondence, U simply connected.

Let \widetilde{X} and \widetilde{X}' be the Ribaucour transformations of X and X', with constants *c* and *c'* resp.

• The surfaces \widetilde{X} and \widetilde{X}' are defined on the same subset of U.

 \downarrow

• The surfaces of the family \widetilde{X} are complete if, and only if the surfaces of \widetilde{X}' are complete.

Applications to the cousins of the catenoid

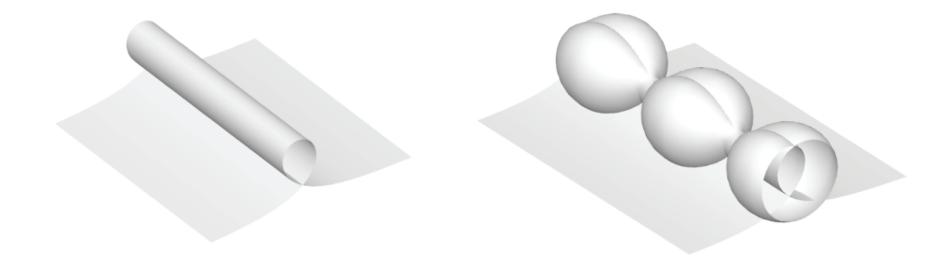
Consider the family of homothetic catenoids in *IR*³ parametrized by

$$X(u_1, u_2) = \frac{\gamma}{2} (\cos 2u_2 \cosh 2u_1, \, \sin 2u_2 \cosh 2u_1, \, -2u_1).$$

where $(u_1, u_2) \in I\!\!R^2$.

Solve the Ribaucour transformation for this family and apply to each cousin of the catenoid.

The so called singular catenoid cousin is the cousin of the catenoid where $\gamma = 1$.



Singular catenoid cousin

Complete cmc1 surface

The associated cmc1 surface, by RT with c = -3, has an embedded horosphere type end at each pair $(0, u_2^0)$, where $u_2^0 = (n - \frac{1}{4})\frac{\pi}{2}$ and n is an integer.

Application:

The Bonnet family of minimal surfaces in \mathbb{R}^3 and cousins in \mathbb{H}^3

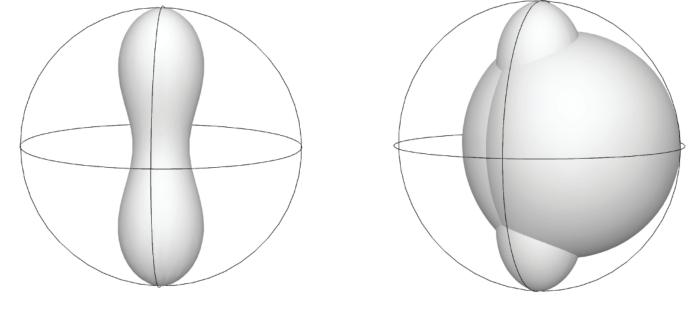
We consider the Bonnet family described by the Weierstrass data

$$g(z) = e^{\mu z}, \qquad f(z) = 2\frac{\nu}{\mu}e^{-\mu z}, \qquad \nu \in \mathbb{R}, \ \mu \in \mathbb{C}$$

The cousin surfaces differ according to the values of *v*.

• For a parametrization $X(z, \overline{z})$ of the cmc1 cousin surface in \mathbb{H}^3 we get explicit parametrizations for the associated surfaces, using the proof of the Commutativity Theorem. **Example: a catenoid cousin and the associated surfaces The associated surfaces depend on two parameters** *c*, *A*.

A nonsingular catenoid cousin: $\mu = 2$ v = 5/4.



A catenoid cousin

cmc1 surface c=4/5

A cmc1 cousin of the catenoid and an associated complete surface by Ribaucour transformation, with c = 4/5, A = 0,. It has 2 ends, one of them is an embedded horosphere type end.

Special class of associated surfaces

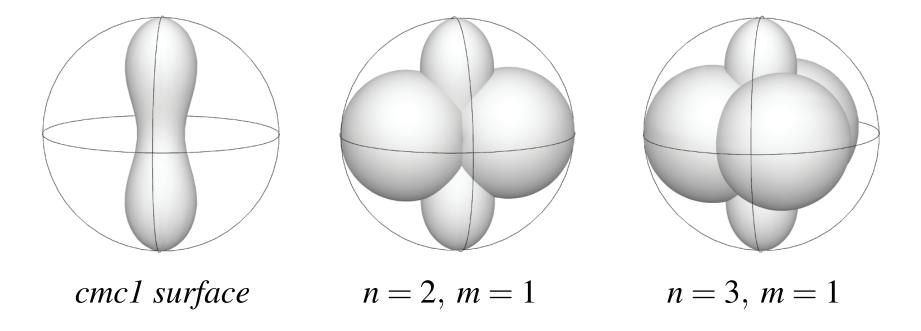
Consider
$$c \in \mathbb{R} \setminus \{0, -1\}$$
.
If $c < \frac{4}{5}$ and $c = \frac{1}{5}(4 - 9\frac{n^2}{m^2})$ and $\frac{n}{m} \in Q$ is irreducible,
 \Downarrow

- The associated cmc1 surface is periodic in *u*₂
- *n* is the number of embedded ends of horosphere type
- *m* is the geometric index of the end of catenoid type
- It is the immersion of a sphere punctured at n + 2 points
- The total curvature is $-4\pi(n+m)$

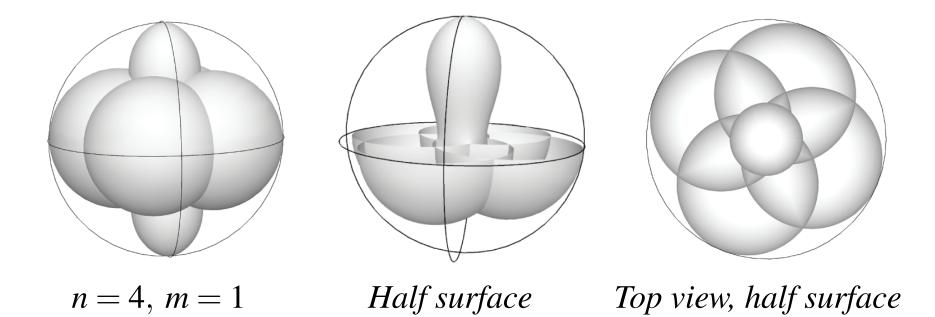
Other values of *c*

If
$$c > \frac{4}{5}$$
 or $c < \frac{4}{5}$ and $\frac{1}{3}\sqrt{4-5c} \notin Q$
 \Downarrow

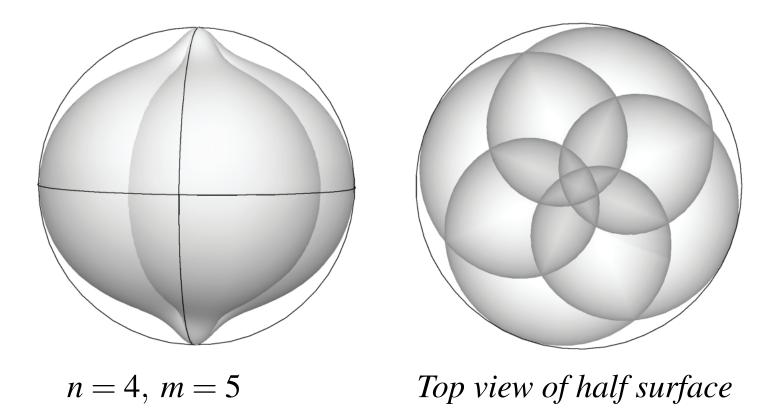
- the associated cmc1 surfaces are not periodic in any variable
- it has infinitely many embedded ends of horosphere type.



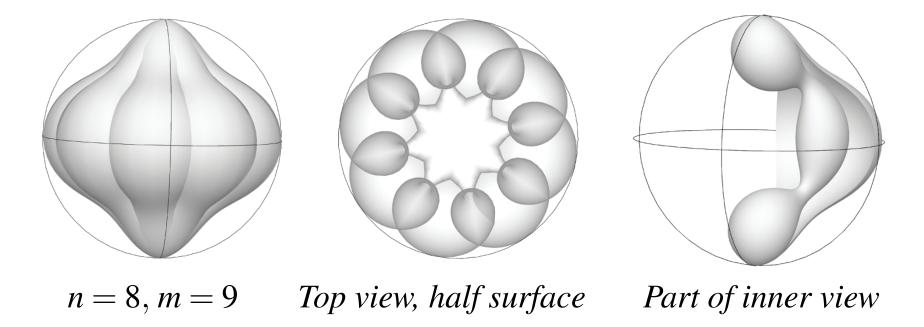
A cmc1 cousin of the catenoid in \mathbb{H}^3 and associated complete surfaces by Ribaucour transformations with A = 0.



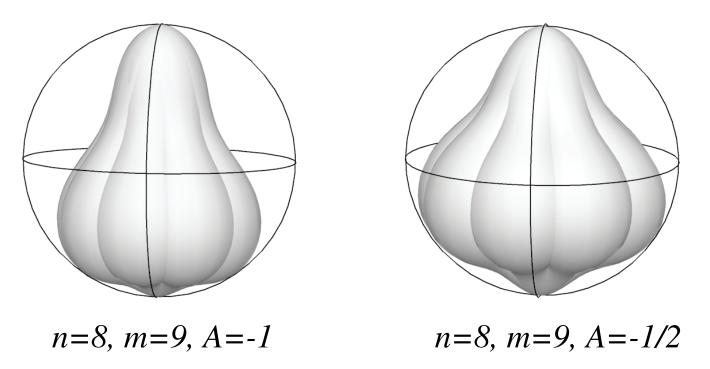
A complete cmc1 surface in \mathbb{H}^3 associated to the catenoid cousin.



A complete cmc1 surface reflected to the upper half space (or internal component of the Poincaré ball model) of \mathbb{H}^3 . It has 4 embedded ends of horosphere type and 2 ends of catenoid type of geometric index 5.



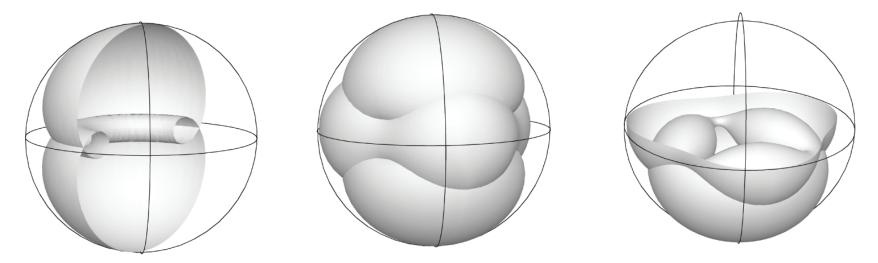
A complete cmc1 surface reflected to the upper half space (or internal component of the Poincaré ball model) of IH^3 . It has 8 embedded ends of horosphere type and two ends of catenoid type of geometric index 9. $A \neq 0$



Two complete cmc1 surfaces reflected to the upper half space of $\mathbb{I}H^3$. They have 8 embedded ends of horosphere type and two catenoid ends with geometric index 9.

Umehara Yamada examples

 $\mu = 5/2$, $v = (1 - \mu^2)/4$, A = 0 and specific values for c.



Half of a cmc1 non embedded cousin of the catenoid in \mathbb{H}^3 . A complete cmc1 surface associated by a RT with n = 3, m = 1 and A = 0. It has three embedded ends of horosphere type and two embedded ends of catenoid type.

• Other values for *c* or *A* produce new cmc1 surfaces.

Theorem

- Each minimal surface in \mathbb{R}^3 associated by Ribaucour transformation to the Bonnet family is complete.
- Each cmc1 surface in *H*³ associated by a Ribaucour transformation to the cousins of the Bonnet family is complete.

Application: A family of cmc $H = -\sqrt{5}/2$ surfaces in \mathbb{H}^3

Start with the cylinder in \mathbb{R}^3 with radius one.

$$X(u_1, u_2) = (\cos u_2, \sin u_2, u_1).$$

Surface in $I\!H^3 \subset L^4$ corresponding to X by Lawson correspondence

$$X'(u_1, u_2) = \left(\frac{2}{\alpha} \cosh \frac{\alpha u_2}{2}, \frac{1}{\beta} \cos(\beta u_1), \frac{1}{\beta} \sin(\beta u_1), \frac{2}{\alpha} \sinh \frac{\alpha u_2}{2}\right),$$

where

$$\alpha = \sqrt{2(\sqrt{5}-1)}, \qquad \beta = \frac{\alpha}{\sqrt{5}-1}.$$

X' has constant mean curvature $H = -\sqrt{5}/2$.

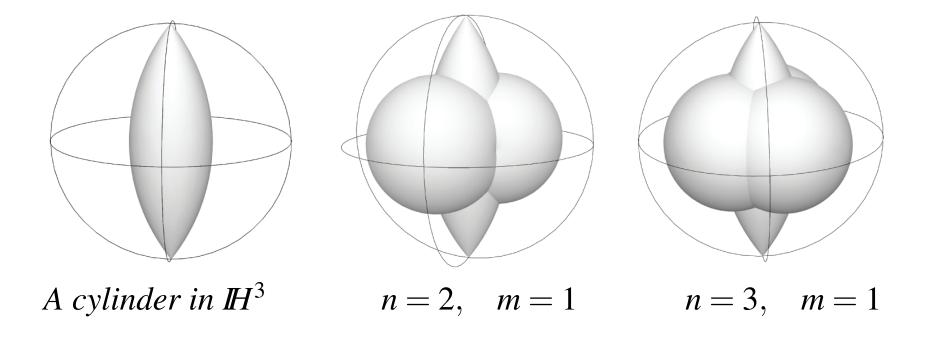
Special class of associated cmc*H* **surfaces**

Consider c < 0 or c > 1 and $c \neq (\sqrt{5} + 1)/2$. If $c = \frac{(\sqrt{5} + 1)n^2}{2m^2}$, $\frac{n}{m} \in Q$ is irreducible and $\begin{cases} \frac{n}{m} > 1, \text{ or} \\ (\sqrt{5} - 1)/2 < n^2/m^2 < 1 \end{cases}$ $\downarrow \downarrow$

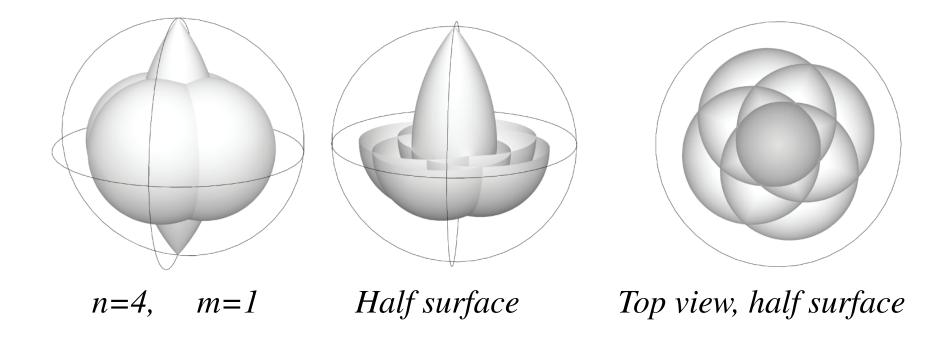
- the associated cmcH surface is periodic in u_1
- *n* is the number of bubbles or "sections"
- *m* is the geometric index of the two ends

Otherwise:
$$c < 0$$
 or $c > 1$, $c \neq (\sqrt{(5)} + 1)/2$ and $\sqrt{\frac{2c}{\sqrt{5}+1}} \notin Q$
 \Downarrow

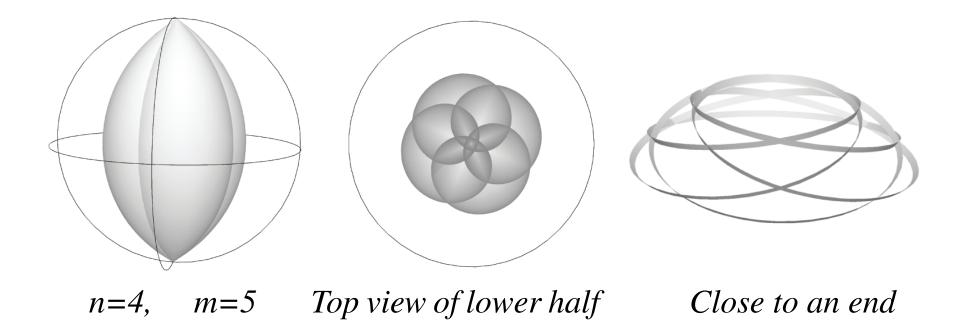
- the associated cmcH surfaces are not periodic in any variable
- it has infinitely many bubbles or "sections".



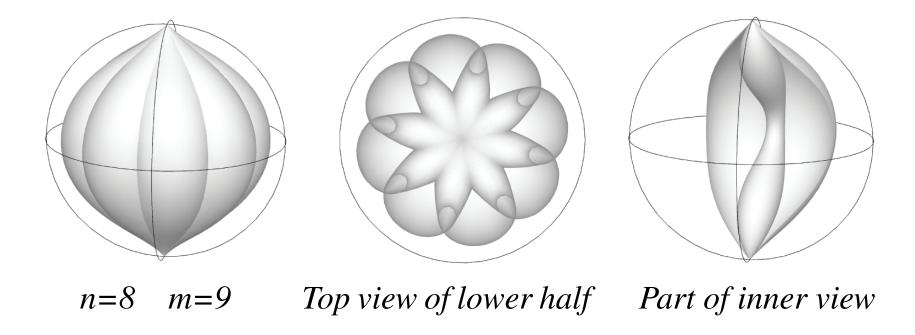
A cylinder in \mathbb{H}^3 with constant mean curvature $H = -\sqrt{5}/2$. Two complete cmcH surfaces associated to the cylinder by Ribaucour transformations with 2 and 3 "bubbles" and 2 embedded ends of cylindrical type.



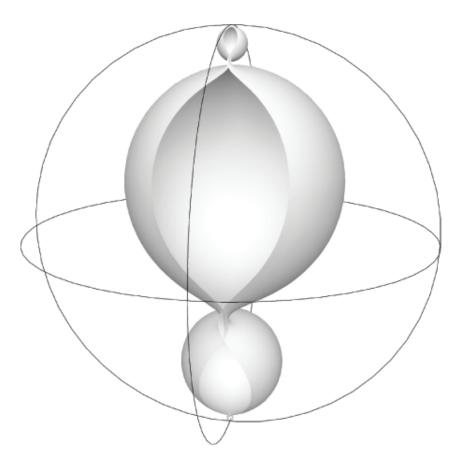
A complete cmcH surface in \mathbb{H}^3 It has four bubbles and two embedded ends of cylindrical type.



A complete cmcH surface reflected to the upper half space of $I\!H^3$ (or the inner part of the Poincaré ball) It has 4 "sections" and two cylindrical ends of geometric index 5.



A complete cmcH surface reflected to the upper half space of $I\!H^3$ (or the inner part of the Poincaré ball) It has 8 "sections" and two cylindrical ends with geometric index 9.



Part of a complete cmcH surface in \mathbb{H}^3 , obtained with c = -3/2. It has infinitely many bubbles in both directions approaching the boundary of the Poincaré ball model.