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Ribaucour Transfomations (Classical definition)

M, M̃ surfaces in M̄3(k) without umbilic points,
ψ : M→ M̃ diffeomorfism such that:

a) expph(p)N(p) = expψ(p)h(p)Ñ(ψ(p)), ∀p ∈M;

b) M0 = {expph(p)N(p)|p ∈M} is a surface in M;

c) ψ preserves lines of curvature.

a) can be rewritten as

p+h(p)N(p) = ψ(p)+h(p)Ñ(ψ(p)), p ∈M, if k = 0,

and

h(p) =
{

tan(φ(p)), φ : M→
(
0, π

2

)
, if k = 1,

tanh(φ(p)), φ : M→ IR, if k =−1.



Ribaucour transformation in IR3



Remarks

•We only need the existence of an orthonormal frame of prin-
cipal directions e1, e2 on M.

• Require dψ(e1) and dψ(e2) to be orthogonal principal direc-
tions on M̃.

• Higher dimensional generalization of RT, Corro (2004).

• The hypersurfaces M̃ may differ according to the chosen frame
(when the principal curvatures of M have multiplicity > 1).



• Ribaucour transformations (RT) between surfaces of constant
Gaussian curvature, cmc or minimal surfaces were known
since 1918 (Ribaucour, Bianchi).

• First examples of minimal surfaces using RT were obtained
by Corro, Ferreira, , 2003.

• RT were extended to linear Weingarten (LW) surfaces in IR3

by Corro, Ferreira, , 2003) and in space forms by ,
Wang (2006).

• These results provided an extension and a unified version of
the classical results. We obtained several applications and ge-
ometric properties of RT.

• This talk is a survey of some results (2003 - 2011).



Remarks:

• M̃ may be locally associated to M by a Ribaucour transfor-
mation.

•We consider the hyperbolic three space as the submanifold of
L4

IH3 = {x ∈ IL4|< x,x >=−1}

with two connected components.

• A Ribaucour transformation is equivalent to solving a non-
linear PDE for h. This equation can be reduced to a linear
system of diff. equations by considering h = Ω/W .



A characterization of Ribaucour transformations in M̄3(k)

Theorem A. Let M ⊂ M̄3(k) be a surface which admits an o.n.
frame e1, e2 of principal directions. A surface M̃ is locally assoc.
to M, by a Ribaucour transf. ⇐⇒ h =

Ω

W
where Ω and W 6= 0

satisfy

dΩ =
2

∑
i=1

Ωiωi,

dW =
2

∑
i=1

Ωiωi3,

dΩi(e j) = Ω jωi j(e j), i 6= j.

If X is a local parametrization of M then M̃ is parametrized by

X̃ =
(

1− 2kΩ2

S

)
X−2Ω

S
(∇Ω−W e3) where S =

2

∑
j=1

(Ω j)2+W 2+kΩ
2



Linear Weingarten (LW) surfaces in M̄3(k)

α +βH + γ(K− k) = 0, α, β , γ ∈ R

H and K are the mean and Gaussian curvatures.

We say it is
hyperbolic when ∆ := β 2−4αγ < 0
eliptic when ∆ > 0

∆ = 0 characterizes the tubular surfaces.

In particular a surface is:
hyperbolic when K− k =−1
eliptic when K− k = 1, cmc or minimal.



Ribaucour transformations for LW surfaces
(Corro, Ferreira, , Wang)

Theorem B. Let M and M̃ be regular surfaces in M̄3(k) associ-
ated by a Ribaucour transformation. If Ωi, Ω and W satisfy the
additional condition

S = 2c(αΩ
2 +βΩW + γW 2)

c 6= 0, α, β , γ are real numbers and S = Ω2
1 + Ω2

2 +W 2 + kΩ2 .
Then

M̃ satisfies α +β H̃ + γ(K̃− k) = 0,

m

M satisfies α +βH + γ(K− k) = 0.



Special Cases

• cmc H surfaces

α =−H 6= 0, β = 1, γ = 0

the algebraic condition reduces to

S = 2cΩ(−HΩ+W),

and c must satisfy c(c−2H)−k > 0.

•Minimal surfaces

α = 0, β = 1, γ = 0

the algebraic condition reduces to

S = 2cΩW.



Let M ⊂ M̄3(k) be LW surface.
Let e1 and e2 be an o.n. frame of principal directions.
If M satisfies α + β H + γ (K− k) then the RT is the integrable
system:

dΩ =
2

∑
i=1

Ωiωi,

dW =
2

∑
i=1

Ωiωi3,

dΩi = Ω jωi j +{(2cα− k)Ω−βcW}ωi +{cβΩ+(2cγ−1)W}ωi3, i 6= j.

with initial condition satisfying

Ω
2
1 +Ω

2
2 +W 2 + kΩ

2 = 2c(αΩ
2 +βΩW + γW 2),

• Generically we get a three parameter family of surfaces.



Embedded planar ends in IR3.

Theorem. (Corro, Ferreira, ) Consider X̃ : D\{p0}→ R3,
X : D→ R3 minimal surfaces, locally assoc. by a RT such that Ω

and W are defined on D. If S (p0) = 0, Ω(p0) 6= 0 and S (p) 6= 0,
∀p ∈ D\{p0},

(a) for any divergent curve γ : [0,1)→ D\{p0} such that lim
t→1

γ (t) = p0

the length of X̃ (γ) is infinite.

(b) X̃ has an embedded planar end at p0, and lim
p→p0

Ñ (p) = N (p0).



Proposition. (Corro, Ferreira, ) Consider the catenoid
parametrized by

X(u1,u2) = (cosu2 coshu1, sinu2 coshu1, u1)

Up to rigid motions of R3, a parametrized surface X̃c is a mini-
mal surface, locally associated to X by a Ribaucour transforma-
tion as in Theorem B⇐⇒

X̃c = X− coshu1

c
(cosu2,sinu2,0)+

1
c(f+g)

(f′Xu1−g′Xu2)

where c 6= 0, f(u1) and g(u2) satisfy

f′′+(2c−1)f = g′′− (2c−1)g = 0

and the initial conditions satisfy

(f′)2 +(g′)2 +(2c−1)(f2−g2) = 0.



c = 1/2, a family of complete minimal surfaces of genus zero and
two ends. Each surface has one embedded planar end. The other

end wraps around the catenoid infinitely many times.



For c 6= 0, c < 1/2 and
√

1−2c = n/m is an irreducible rational
numbers, n 6= m.

•We obtain a family of complete minimal surfaces modelled
on a sphere punctured at n+2 points, which depends on a
parameter A.

• It has n embedded planar ends and 2 nonplanar ends of geo-
metric index m.

• The total curvature is −4π(n+m).

• The parameter A affects the direction of the planar ends.



When c > 1/2 or 0 6= c < 1/2 and
√

1−2c 6∈Q:

•We obtain a family of complete minimal surfaces that corre-
spond to immersions of a sphere punctured at infinitely many
points, which depends on a parameter A.

• Each surface has infinitely many planar ends

• It is not periodic in any variable.

• It has infinite total curvature.

RT wer also applied to the Bonnet family . They are minimal
surfaces in R3 that contain the Enneper surface and the catenoid.
(Lemes, )



n = 2, m = 1, A = 0 n = 2, m = 1, A = 1/2

Complete minimal surfaces associated to the catenoid



Complete minimal surf. with n = 2, n = 3, n = 4, n = 5 and m = 1.



n = 2, m = 3, A = 0 n = 5, m = 3, A = 0

Complete minimal surfaces associated to the catenoid by RT



Complete minimal surface associated to the catenoid n = 4 and
m = 3



LW surfaces associated to the cylinder

Proposition (Corro, Ferreira, ) Consider the cylinder

X(u1,u2) = (cos(u2),sin(u2),u1)

as a LW surface −1/2+H+ γK = 0. The surfaces locally asso-
ciated to X by a Ribaucour transformation, as in Theorem B,
satisfy −1/2+ H̃+ γK̃ = 0 and they are given by

X̃cγ = X− 2(f+g)
c[(2γ +1)g2− f2]

(f′Xu1 +g′Xu2−gN)

where c 6= 0, γ ∈ R, f(u1), g(u2) are solutions of

f′′+ cf = 0, g′′+ξ g = 0

ξ (c,γ) = 1− c(2γ +1)

c and ξ are not simultaneously positive.



• X̃cγ is complete when (c,γ) is in one of the two regions.

• X̃c0 are cmc surfaces (γ = 0).

• On the dashed curves on the left ξ = 1− c(2γ +1) = n2

m2,
n
m ∈Q.



γ = 0

• For each c < 0 such that
√

1− c = n
m ∈ Q irreducible, the sur-

face is periodic in one variable.

• It has n bubbles and two ends asymptotic to the cylinder with
geometric index m.

• For other values of c the cmcH surface is not periodic in any
variable. The surface has one end and infinitely many bub-
bles.







Complete cmc1/2 surface, c = 2.8. Infinite number of bubbles



γ 6= 0

Complete LW surface (tubular) γ =−1/2, c =−0.1.



Partial view of a complete hyperbolic LW surface γ =−1
Sine-Gordon equation.



Ribaucour transformations of the Delaunay surface



• DPW method (1998) loop group theory, loop parameter in IC.

• Burstall (2006): for cmc surfaces in IR3, the simple type dress-
ing for real and pure imaginary parameters are equivalent to
Darboux transformations (conformal RT).

• Hetrich-Jeromin-Pedit (1997): Bianchi-Backlund transforma-
tion of a cmc surface in IR3 is a Darboux transformation. The
converse does not hold.

• Kobayashi (2008): for a round cylinder in IR3, Bianchi-Backlund
≡ simple type dressing ≡ Darboux transformation.



• Kobayashi, using the DPW method, constructed cylinder bub-
bletons cmc1 in IH3 and cmc0 in S3. Schmitt used the CM-
CLab software.

• The existence of cmc surfaces with n bubbles was proved by
Groβe-Bauckmann 1993 and Sterling-Wente 1993.

• The families of cmc surfaces visualized in our papers obtained
by using RT, are given by explicit parametrizations.



M. Lemes, P. Roitman, and R. Tribuzy
Transactions AMS (to appear)

In general, a RT between LW surfaces, given by Theorem B, is
not a Darboux transformation, i.e it is not conformal.

Theorem. Let M and M̃ be LW surfaces in M3(k) associated by a
Ribaucour transformation as in Theorem B. Then the transfor-
mation is conformal

m

M and M̃ have the same constant mean curvature.



Embedded ends of horosphere type in IH3.

Theorem. Let X : D ⊂ IR2 → IH3 and X̃ : D\{p0} ⊂ IR2 → IH3

be cmc1 surfaces, locally associated by a Ribaucour transforma-
tion. Let G̃ and G be the hyperbolic Gauss maps of X̃ and X ,
respectively. Assume that Ωi, Ω and W are defined on D.
If S (p0) = 0, Ω(p0) 6= 0 and S (p) 6= 0 for all p ∈ D\{p0}

⇓

• lim
p→p0

G̃(p) = G(p0).

• X̃ has an embedded horosphere type end at p0,



Remarks

•Mathematicians have been very successful in constructing new
complete minimal and constant mean curvature surfaces, by
using different techniques.

• Lawson correspondence associates isometric surfaces of dis-
tinct cmc surfaces in appropriate space forms.

•We will relate Lawson correspondence to RT.



Lawson correspondence

Consider a simply connected cmcH surface M ⊂M3(k), with in-
duced metric I and shape operator A.

Let H ′ ∈ IR, H ′ 6= H. Define A′ := A+(H ′−H)Id.
The pair I, A′ satisfies the Gauss and Codazzi equations for a
surface M′ ⊂M′(k′).
M′ is isometric to M, it has constant mean curvature H ′ and

k′ = k +H2− (H ′)2.

We say that M and M′ are related by the Lawson correspondence

When M is a minimal surface, M′ is also referred to as a cmc
cousin of M.



Commutativity Theorem

Theorem Lawson correspondence commutes with Darboux trans-
formation (or Ribaucour transformation for surfaces of the same
constant mean curvature).



Let M and M′ be cmcH and cmcH ′ surfaces respectively. H ′ 6= H.
k′+(H ′)2 = k +H2.

Lawson
M ⊂M3(k) −→ M′ ⊂M3(k′)

Ribaucour(c) ↓ ↓ Ribaucour(c′)

M̃ ⊂M3(k) −→ M̃′ ⊂M3(k′)
Lawson

c 6= 0, c′ 6= 0.

Verify commutativity considering

c′ = c+H ′−H Ω
′ = Ω, W ′ = W +(H ′−H)Ω.



Corollary. Let X : U ⊂ IR2→M3(k) and X ′ : U →M3(k′) be im-
mersions related by the Lawson correspondence, U simply con-
nected.
Let X̃ and X̃ ′ be the Ribaucour transformations of X and X ′, with
constants c and c′ resp.

⇓

• The surfaces X̃ and X̃ ′ are defined on the same subset of U .

• The surfaces of the family X̃ are complete if, and only if the
surfaces of X̃ ′ are complete.



Applications to the cousins of the catenoid

Consider the family of homothetic catenoids in IR3 parametrized
by

X(u1,u2) =
γ

2
(cos2u2 cosh2u1, sin2u2 cosh2u1, −2u1).

where (u1,u2) ∈ IR2.

Solve the Ribaucour transformation for this family and apply
to each cousin of the catenoid.

The so called singular catenoid cousin is the cousin of the catenoid
where γ = 1.



Singular catenoid cousin Complete cmc1 surface

The associated cmc1 surface, by RT with c = −3, has an
embedded horosphere type end at each pair (0,u0

2), where
u0

2 = (n− 1
4)

π

2 and n is an integer.



Application:
The Bonnet family of minimal surfaces in IR3 and cousins in IH3

We consider the Bonnet family described by the Weierstrass
data

g(z) = eµz, f (z) = 2
ν

µ
e−µz, ν ∈ IR, µ ∈ IC

The cousin surfaces differ according to the values of ν .

• For a parametrization X(z, z̄) of the cmc1 cousin surface in IH3

we get explicit parametrizations for the associated surfaces,
using the proof of the Commutativity Theorem.



Example: a catenoid cousin and the associated surfaces
The associated surfaces depend on two parameters c, A.

A nonsingular catenoid cousin: µ = 2 ν = 5/4.

A catenoid cousin cmc1 surface c=4/5

A cmc1 cousin of the catenoid and an associated complete sur-
face by Ribaucour transformation, with c = 4/5, A = 0,. It has
2 ends, one of them is an embedded horosphere type end.



Special class of associated surfaces

Consider c ∈ IR\{0,−1}.
If c < 4

5 and c = 1
5(4−9 n2

m2) and n
m ∈ Q is irreducible,

⇓

• The associated cmc1 surface is periodic in u2

• n is the number of embedded ends of horosphere type

• m is the geometric index of the end of catenoid type

• It is the immersion of a sphere punctured at n+2 points

• The total curvature is −4π(n+m)



Other values of c

If c > 4
5 or c < 4

5 and 1
3

√
4−5c 6∈ Q

⇓

• the associated cmc1 surfaces are not periodic in any variable

• it has infinitely many embedded ends of horosphere type.



cmc1 surface n = 2, m = 1 n = 3, m = 1

A cmc1 cousin of the catenoid in IH3 and associated complete
surfaces by Ribaucour transformations with A = 0.



n = 4, m = 1 Half surface Top view, half surface

A complete cmc1 surface in IH3 associated to the catenoid
cousin.



n = 4, m = 5 Top view of half surface

A complete cmc1 surface reflected to the upper half space (or
internal component of the Poincaré ball model) of IH3.
It has 4 embedded ends of horosphere type and 2 ends of
catenoid type of geometric index 5.



n = 8, m = 9 Top view, half surface Part of inner view

A complete cmc1 surface reflected to the upper half space (or
internal component of the Poincaré ball model) of IH3.
It has 8 embedded ends of horosphere type and two ends of
catenoid type of geometric index 9.



A 6= 0

n=8, m=9, A=-1 n=8, m=9, A=-1/2

Two complete cmc1 surfaces reflected to the upper half space
of IH3. They have 8 embedded ends of horosphere type and
two catenoid ends with geometric index 9.



Umehara Yamada examples

µ = 5/2, ν = (1−µ2)/4, A = 0 and specific values for c.

Half of a cmc1 non embedded cousin of the catenoid in IH3. A
complete cmc1 surface associated by a RT with n = 3, m = 1
and A = 0. It has three embedded ends of horosphere type and
two embedded ends of catenoid type.

• Other values for c or A produce new cmc1 surfaces.



Theorem

• Each minimal surface in IR3 associated by Ribaucour trans-
formation to the Bonnet family is complete.

• Each cmc1 surface in IH3 associated by a Ribaucour transfor-
mation to the cousins of the Bonnet family is complete.



Application: A family of cmc H =−
√

5/2 surfaces in IH3

Start with the cylinder in IR3 with radius one.

X(u1, u2) = (cosu2, sinu2, u1).

Surface in IH3 ⊂ L4 corresponding to X by Lawson correspon-
dence

X ′(u1, u2) = (
2
α

cosh
αu2

2
,

1
β

cos(βu1),
1
β

sin(βu1),
2
α

sinh
αu2

2
),

where
α =

√
2(
√

5−1), β =
α√

5−1
.

X ′ has constant mean curvature H =−
√

5/2.



Special class of associated cmcH surfaces

Consider c < 0 or c > 1 and c 6= (
√

(5)+1)/2.

If c = (
√

5+1)n2

2m2 , n
m ∈Q is irreducible and

{ n
m > 1, or
(
√

5−1)/2 < n2/m2 < 1
⇓

• the associated cmcH surface is periodic in u1

• n is the number of bubbles or “sections”

• m is the geometric index of the two ends

Otherwise: c < 0 or c > 1, c 6= (
√

(5)+1)/2 and
√

2c√
5+1
6∈ Q

⇓

• the associated cmcH surfaces are not periodic in any variable

• it has infinitely many bubbles or “sections”.



A cylinder in IH3 n = 2, m = 1 n = 3, m = 1

A cylinder in IH3 with constant mean curvature H = −
√

5/2.
Two complete cmcH surfaces associated to the cylinder by
Ribaucour transformations with 2 and 3 “bubbles” and 2 em-
bedded ends of cylindrical type.



n=4, m=1 Half surface Top view, half surface

A complete cmcH surface in IH3 It has four bubbles and two
embedded ends of cylindrical type.



n=4, m=5 Top view of lower half Close to an end

A complete cmcH surface reflected to the upper half space of
IH3 (or the inner part of the Poincaré ball) It has 4 “sections”
and two cylindrical ends of geometric index 5.



n=8 m=9 Top view of lower half Part of inner view

A complete cmcH surface reflected to the upper half space of
IH3 (or the inner part of the Poincaré ball) It has 8 “sections”
and two cylindrical ends with geometric index 9.



Part of a complete cmcH surface in IH3, obtained with c =
−3/2. It has infinitely many bubbles in both directions ap-
proaching the boundary of the Poincaré ball model.


