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Preliminaries
I Smooth, connected, n-dimensional Lorentzian manifold (M,g)
I Lorentzian inner product (Rn, η) with ηab = ηba, a,b = 1, . . . ,n
η-orthogonal coframe: isomorphism (TxM,gx )→ (Rn, η)

I Group of η-orthogonal transformations: O(η) = Aut(η)
Lie algebra o(η) with basis Aα, α = 1, . . . ,n(n − 1)/2.

I Principal O(η)-bundle of η-orthogonal coframes O(η,M)→ M
Moving η-orthogonal coframe: section ω : U → O(η,U), U ⊂ M.
Equivalently, moving coframe ωa is η-orthogonal if g = ηabω

a⊗ωb

I Canonical lifted coframe: (ω̂a, Γ̂α) subject to structure equations:

dω̂ + Γ̂ ∧ ω = 0, dΓ̂ + Γ̂ ∧ Γ̂ = Ω̂

I Let R denote the curvature tensor as a section of ⊗4T ∗M.
Let R̂abcd : O(η,M)→ R be the corresponding lift:

Ω̂αAαab =
1
2

R̂abcd ω̂
c ∧ ω̂d

Let R̂abcd ;e1...ep : O(η,M)→ R be the lift of ∇pR:

dR̂abcd ;e1...ep−1 = R̂abcd ;e1...ep ω̂
ep + (Aα · R̂)abcd Γ̂α



Equivalence problem for metric tensors

I Set Rp = ⊗4(Rn)∗ ⊕ · · · ⊕ ⊗4+p(Rn)∗

Let R̂(p) : O(η,M)→ Rp be the composite lift of R,∇R, . . . ,∇pR:

R̂(p) = (R̂abcd , R̂abcd ;e, . . . , R̂abcd ;e1...ep )

I Say that (M,g) is regular if the rank of R̂(p) is constant for all p.
Let ρp := rank R̂(p). Note: ρp ≤ ρp+1 ≤ dim O(η,M) = n(n + 1)/2
Let q = qM be the smallest integer such that ρq−1 = ρq .
Call q − 1 the order of (M,g).

I Theorem [Cartan,Olver]: Suppose that (M,g) is regular. Then
R̂(q) : O(η,M)→ R(q) parameterizes a classifying manifold.
Manifolds (M,g) and (M̃, g̃) are locally isometric iff qM = qM̃ and

R̂(q) and ˆ̃R(q) parameterize overlapping classifying manifolds.
I Proposition: qM ≤ n(n + 1)/2 = dim O(η,M).

Question: for a fixed signature and dimension, what is the
maximum order?



Main result - 4 dimensions

Theorem (Milson,Pelavas): for 4-dimensional Lorentzian manifolds, q ≤ 7.
The bound is sharp. All order 6 metrics that don’t pseudo-stabilize are locally
equivalent to g = ω1ω2 − ω3ω4 where

ω1 =
(

db/2 + i(a db + da)− eb
(

a + i
(

a2 + C2/2− 5/4
))

ds
)
/C1,

ω2 =
(

db/2− i(a db + da)− eb
(

a− i
(

a2 + C2/2− 5/4
))

ds
)
/C1,

ω3 = ebds,

ω4 = e−3bdt − (C2/C2
1 )(da + a db)+

+
(

F (s)e−3b − 6 ae−2bt + (C2/C2
1 )
(

a2 + C2/4− 5/8
)

eb
)

ds.

Note 1: the above metric is an exact solution for coupled gravity and
null-radiation on an anti-deSitter background.
Note 2: there may or may not exist order 6 metrics that pseudo-stabilize
(ongoing research).



Main result - 3 dimensions

Theorem (Milson, Wylleman): For 3-dimensional Lorentz manifolds, q ≤ 5.
The above bound is sharp. All order 4 metrics, up to local equivalence,
belong to one of the following 3 classes:

(dsi )
2 = 2 (x du + dw)2 + du

(
fi du − T−1dx

)
, i = 1, 2, T 6= 0,

(ds3)2 = 2dw2 + 2du((φ(u) + 2v + Cx2)du − dx), C 6= 0,

where C,K ,T are real constants, where φ(u) is a real-valued function, and
where

f1 = KT−1(e4w − 1) +
1
2

(x + φ(u)) ((K − 2)x + (K + 2)φ(u))− φ′(u),

f2 = −x2 + |T |−5/2x + |T |−1e4Tw + φ(u)



Talk overview

I Joint work with Nicos Pelavas (4D) and Lode Wylleman (3D)
I Equivalence problem: Cartan (1926, 1946), Karlhede (1980)
I Curvature classification: Petrov (1954,1961), Penrose (1960),
I Curvature homogeneity: Singer (1960), Bueken, Boeckx, Djoric,

Gilkey, Kovalski, VanHecke (1996,2000,2008)
I The Karlhede algorithm
I Curvature homogeneity
I Petrov type
I Pseudo-stabilization and other technicalities





Curvature normalization and regularity
I Definitions. Let S ⊂ R(p) be a submanifold, set G = O(η) and let

H = GS , meaning that H = {X ∈ G : X (S) ⊂ S}.
Say that C is an H-kernel if H is a closed subgroup of G and if the
mapping S ×H G→ G(S) is a diffeomorphism.
Say that S is a normalizing cross-section if it is an H-kernel and if in
addition H fixes S point-wise.
Note: If we added the assumption that G(S) is an open subset of R(p),
then S would be a slice [Palais].

I Proposition. Let S ⊂ R(p) be an H-kernel where H = GS ,G = O(η) as
above. Suppose that the image of R̂(p) is contained in G(S). Then

O(η,M,S) := (R̂(p))−1(S)

is a principal H-bundle over M, and the embedding
O(η,M,S) ↪→ O(η,M) is a reduction of structure from G to H.
Moreover, R̂(p)|O(η,M,S) is constant in the fibres and descends to a
well-defined mapping R(p)

S : M → S (called Cartan invariants).
Equivalently, R(p)

S = R̂(p)|ω = (Rabcd ,Rabcd ;e, . . . ,Rabcd ;e1...ep ) is
independent of the choice of ω : U → O(η,U,S), U ⊂ M.

I Example: diagonalize the Ricci tensor to find a preferred coframe
(maximal reduction of the structure group).



The Karlhede algorithm

I Definition. Call (M, g) p-curvature regular if there exists a normalizing
cross-section S ⊂ Rp such that img R̂(p) ⊂ G(S), where G = O(η).

I Proposition: Suppose that (M, g) is p-regular and p-curvature regular.
Let R(p)

S : M → S be the normalized curvature mapping into a
normalizing cross-section S ⊂ Rp. Then, τp := rank R(p)

S is constant and
independent of the choice of S. Moreover, setting νp = dim GS ,

ρp = τp + dim G − dim GS = τp + n(n − 1)/2− νp

Moreover, if q − 1 is the order of (M, g), then R(q)
S : M → S is a rank τq

parameterization of a classifying manifold for (M, g).
The integer n − τq + νq is the dim. of the isometry group, with νq the
dim. of the isotropy subgroup and n − τq the dim. of the orbits.

I Algorithm: S(0) → S(1) → · · · → S(q) a tower of normalizing
cross-sections with structure groups G(p) = G(p−1)

S(p) and G(−1) = O(η).
Integer seqences: νp = dim G(p) (non-increasing) and τp = rank Rp

S(p)

(non-decreasing) with q the smallest integer such that νq−1 = νq and
τq−1 = τq .





Curvature homogeneity
I Definition. Say that (M, g) is k-curvature homogeneous (CHk ) if for

every x , y ∈ M there exists an isomorphism φ : (Tx M, gx )→ (Ty M, gy )
such that

φ∗∇jRy = ∇jRx , j = 0, 1, . . . , k
We say that (M, g) is properly CHk if it is CHk , but not CHk+1.

I Equivalent definition 1: there exists a cover by moving coframes
ω : U → O(η,U) with constant R̂(k)|ω = (Rabcd ,Rabcd ;e, . . . ,Rabcd ;e1...ek )

I Equivalent definition 2: CHk iff τk = 0.
Properly CHk iff k is the smallest integer for which τk+1 6= 0.

I Theorem [Singer] A manifold is locally homogeneous iff it is curvature
homogeneous, i.e., CHk for all k .

I Definition: for a fixed dimension and signature, the Singer number is
the maximum value of k such that there exists a proper CHk . In other
words, the test for homogeneity requires
R̂(k) = (R̂abcd , R̂abcd ;e, . . . , R̂abcd ;e1...ek+1 ) where k is the Singer number.

I Observation: the manifolds of maximal order turn out to be proper CHk

manifolds that realize the Singer number. For such manifolds we have

ν0 > ν1 > · · · > νk = νk+1 = 0, 0 = τ0 = τ1 = · · · = τk < τk+1.

I Concusion: The Singer number is the key to manifolds of maximum
order. Classify proper CHk where k is as large as possible.



The 3D classification

Theorem: The Singer number for 3-dimensional Lorentzian geometry is
k = 1. The unique (up to a 3D-Lorentz transformation) proper CH1

geometries satisfy the following structure equations:

dω0 = −Tω0 ∧ ω1

dω1 = −4Tω0 ∧ ω2

dω2 = ω0 ∧ ω1 + 2εω0 ∧ ω2 − Tω1 ∧ ω2

dε ∧ ω0 = εTω0 ∧ ω1 + Cω0 ∧ ω2

Note 1: the metric is g = −2ω0ω2 + 1
2 (ω1)2. The curvature components

(Rabcd ,Rabcd ;e) are functions of the constants T ,C.
Note 2: rank R(2) = 1 with 2nd order curvature scalars (Rabcd ;e1e2 ) functions
of C,T , ε where the latter is a differential invariant with dε 6= 0.
Note 3: By direct calculation: rank R(3) = 2, rank R(4) = 3. Therefore
(wonderful coincidence!) the proper CH1 metrics have maximal order.
Note 3: the 3 classes of exact solution correspond to the cases
(i) T ,C 6= 0; (ii) T 6= 0,C = 0; (iii) T = 0,C 6= 0.



The 4D classification

Theorem: The Singer number for 4-dimensional Lorentzian geometry is
k = 2. The unique (up to Lorentz transformation) proper CH2 geometries
satisfy the following structure equations:

dω1 = C1 ω
1 ∧ ω2 − i(C2 − 3) (ω1 + ω2) ∧ ω3,

dω2 = −C1 ω
1 ∧ ω2 + i(C2 − 2) (ω1 + ω2) ∧ ω3,

dω3 = C1 (ω1 + ω2) ∧ ω3,

dω4 = −2iC2 ω
1 ∧ ω2 − iν(ω1 − ω2) ∧ ω3 − 3C1 (ω1 + ω2) ∧ ω4,

dν ∧ ω3 =
(
(3i/2) C2 (ω1 − ω2)− 3C1ν (ω1 + ω2)− 3C1ω

4) ∧ ω3.

Note 1: the metric is g = ω1ω2 − ω3ω4 where ω1, ω2 are complex conjugate,
while ω3, ω4 are real. The curvature components (Rabcd ,Rabcd ;e,Rabcd ;e1e2 )
are functions of the real constants C1,C2.
Note 2: rank R(3) = 1 with third order curvature scalars (Rabcd ;e1e2e3 ) functions
of C1,C2, ν, where the latter is a scalar invariant with dν 6= 0.
Note 3: By direct calculation: rank R(4) = 2, rank R(5) = 3, rank R(6) = 4.
Therefore (wonderful coincidence!) the proper CH2 metrics have maximal
order.



The Karlhede bound and the 4D Petrov type
I The Penrose-Petrov classification: orbit structure of the Weyl tensor in

4-dimensional Lorentzian geometry
I G0 = Aut(R(0)) where R(0) = R̂(0)|O(η,M,S) with S a normalizing c.s.
I Rank formula: ρ0 = τ0 + dim O(η)− dim G0

rank lower bound: ρ0 ≥ n(n − 1)/2− ν0

Karlhede bound: n(n + 1)/2 ≥ ρq−1 ≥ ρ0 + q − 1

q − 1 ≤ n + ν0

I Double cover SL2C→ SO(1, 3).
As irreps, Weyl4 ∼= P4C (complex polynomials of degree ≤ 4).

Petrov Type Root Structure ν0 Karlhede bound Singer number
I (1111) 0 q ≤ 5 k ≤ 0
II (211) 0 q ≤ 5 k ≤ 0
III (31) 0 q ≤ 5 k ≤ 0
D (22) 2 q ≤ 7 k ≤ 2
N (4) 2 q ≤ 7 k ≤ 2
O . . . 3 q ≤ 8 k ≤ 2

I The search for maximal order manifolds and the Singer number narrow
to Petrov type D, N, O. The type O bound comes from automorphism
groups of the Ricci tensor; this possibility is easily eliminated.



The 3D Petrov type

I Double cover SL2R→ SO(1, 2).
As irreps, Riem3 ∼= Sym2 R3 ∼= 1⊕P4R (real polynomials of degree ≤ 4).

Petrov Type Root Structure Segre Type ν0 q ≤ k ≤
I (1111) {11, 1} 0 4 0

IZ (ZZ̄11) {1zz̄} 0 4 0
IZZ (Z1Z2Z̄1Z̄2) {11, 1} 0 4 0
II (211) {2, 1} 0 4 0

IIZ (2ZZ̄ ) {2, 1} 0 4 0
III (31) {(11), 1} 0 4 0
D (22) {1(1, 1)} 1 5 1

DZ (Z 2Z̄ 2) {3} 1 5 1
N (4) {(21)} 1 5 1
O . . .

I The search for maximal order manifolds and the Singer number narrow
to Petrov types D, DZ N



Some Technicalities

I Karlhede Algorithm: S(0) → S(1) → · · · → S(q) a tower of normalizing
cross-sections with structure groups G(p) = G(p−1)

S(p) and G(−1) = O(η).
Integer seqences: νp = dim G(p) (non-increasing) and τp = rank Rp

S(p)

(non-decreasing) with q the smallest integer such that νq−1 = νq and
τq−1 = τq .

I Pseudo-stabilization: νp = νp+1, τp < τp+1

I A re-formulation:
I normalize Rabcd to reduce the structure group from G−1 = O(η) to

G0 = Aut(R(0)).
I this reduction gives a constrained, overdetermined equivalence

problem. The essential torsion consists of certain connection
scalars, which also figure in the components of Rabcd ;e.

I if the essential torsion is G0 invariant, the structure group cannot be
reduced. However, if functionally independent invariants arise, the
equivalence method does not terminate.



General structure equations

(ηab) =

 0 −1 0
−1 0 0
0 0 1/2

 ,
(

Γ̂a
b

)
=

 Γ̂02 Γ̂12 0
−2Γ̂01 0 2Γ̂12

0 −Γ̂01 −Γ̂02


dω̂0 = −Γ̂02 ∧ ω̂0 − Γ̂12 ∧ ω̂1 dΓ̂01 = −Γ̂01 ∧ Γ̂02 + Ω̂01

dω̂1 = 2Γ̂01 ∧ ω̂0 + 2Γ̂12 ∧ ω̂2 dΓ̂02 = −2 Γ̂01 ∧ Γ̂12 + Ω̂02

dω̂2 = Γ̂01 ∧ ω̂1 + Γ̂02 ∧ ω̂2 dΓ̂12 = −Γ̂02 ∧ Γ̂12 + Ω̂12

Ω̂01 =
1
2

Ψ0 ω̂
0 ∧ ω̂1 + Ψ1 ω̂

0 ∧ ω̂2 + (Ψ2/2 + R/12) ω̂1 ∧ ω̂2

Ω̂02 = Ψ1 ω̂
0 ∧ ω̂1 + (2Ψ2 − R/6) ω̂0 ∧ ω̂2 + Ψ3ω̂

1 ∧ ω̂2

Ω̂12 = (Ψ2/2 + R/12) ω̂0 ∧ ω̂1 + Ψ3 ω̂
0 ∧ ω̂2 +

1
2

Ψ4 ω̂
1 ∧ ω̂2

Note 1: the Bianchi relations not shown
Note 2: R is the Ricci scalar. The curvature components transform like

Ψ(z) = Ψ0 + Ψ14z + Ψ26z2 + Ψ34z3 + Ψ4z4

under the action of SL2R



The type D, CH0 reduction
The normalization: Ψ0 = Ψ1 = Ψ3 = Ψ4 = 0; R,Ψ2 are invariant constants.
Rank: ρ0 = 2, ν0 = 1, τ0 = 0
Reduction (after applying integrability conditions):

Γ01 = κω0 + τω2, Γ12 = τω0 + νω2

Reduced structure equations:

dω0 = −Γ02 ∧ ω0 − (τω0 + νω2) ∧ ω2

dω1 = −4τω0 ∧ ω2

dω2 = Γ02 ∧ ω2 + (κω0 + τω2) ∧ ω1

dΓ02 = (2Ψ2 − R/6− 2κν + 2τ 2)ω0 ∧ ω2

dκ ∧ ω0 + dτ ∧ ω2 = 2κΓ02 ∧ ω0 + (Ψ2/2 + R/12− κν + τ 2)ω1 ∧ ω2

dτ ∧ ω0 + dν ∧ ω2 = −2νΓ02 ∧ ω2 + (Ψ2/2 + R/12− κν + τ 2)ω0 ∧ ω1

Note 1: Bianchi relations are satisfied identically
Note 2: the remaining freedom is the 1-dimensional group of boosts
(diagonal SL2 transformation)

ω0′ = a−1ω0, ω1′ = ω1, ω2′ = aω2, a 6= 0

κ′ = a2κ, ν′ = a−2ν, τ ′ = τ



Type D, CH1 reduction
I Generic subcase: κ, ν 6= 0. Normalize κ→ 1.

The CH1 constraint: τ, ν constant
After imposing integrability conditions: ρ1 = ρ2 = 3, ν1 = 0, τ1 = 0

dω0 = −(τω0 + νω2) ∧ ω1 dω1 = −4τω0 ∧ ω2 dω2 = (ω0 + τω2) ∧ ω1

where τ, ν are constants. Invariant metric on a Lie group.
I Singular subcase: κ 6= 0, ν = 0. Normalize κ→ 1. The CH1 constraint:
τ constant Note: ν ↔ κ by a Lorentz transformation
Rank: ρ0 = 2, ρ1 = 3, ρ2 = 4, ν1 = 0, τ1 = 0, τ2 = 1
After applying integrability conditions get the CH1 structure equations of
the 3D Theorem. Generically, these metrics have order 4 (maximal)

I Stabilization subcase: κ = ν = 0
After imposing integrability conditions, pseudo-stabilization isn’t possible
Get a 0th order homogeneous space w/ 1d isotropy
ρ0 = ρ1 = 2, ν0 = ν1 = 1, τ0 = τ1 = 0

dω0 = −Γ02 ∧ ω0 − τω0 ∧ ω1 dω1 = −4τω0 ∧ ω2

dω2 = Γ02 ∧ ω2 + τω2 ∧ ω1, dΓ02 = (3Ψ2 + 4τ 2)ω0 ∧ ω2

R = −6Ψ2 − 12τ 2, Ψ2, τ constant



Concluding remarks

I The Karlhede bound is sharp for 3D and 4D Lorentzian geometry
(q = 5 and q = 7) respectively.

I The corresponding maximal order manifolds can be classified
explicitly (a bit more work remains to be done in the 4D case)

I Multiple communities investigating equivalence of metric tensors:
Cartan equivalence method, GR/Karlhede algorithm, curvature
homogeneity/Singer number.

I The key requirement is an understading of the orbit structure of
the Rieman curvature tensor. At n ≥ 4, the orbit structure of the
Weyl tensor representation is the key object.

I Curvature normalization reduces the structure group and permits
further analysis.

I There is an important connection between the Singer number
and maximal order. Metrics that realize the Singer number are
natural candidates for the maximal order condition.


