All 3D and 4D Lorentzian manifolds of
maximal order

Robert Milson

Department of Mathematics and Statistics
Dalhousie University

Centre de Recherches Mathématiques
Montreal, 14 June 2011



Preliminaries

» Smooth, connected, n-dimensional Lorentzian manifold (M, g)

» Lorentzian inner product (R”,n) with nap = npa, @,b=1,...,n
n-orthogonal coframe: isomorphism (TxM, gx) — (R",7n)

» Group of n-orthogonal transformations: O(n) = Aut(n)

Lie algebra o(n) with basis A,, o =1,...,n(n—1)/2.

» Principal O(n)-bundle of n-orthogonal coframes O(n, M) — M
Moving n-orthogonal coframe: section w : U — O(n, U), U C M.
Equivalently, moving coframe w? is n-orthogonal if g = 7pw? @ WP

» Canonical lifted coframe: (&2, ) subject to structure equations:

do+TAw=0, dI'+T'AT =0

» Let R denote the curvature tensor as a section of R4AT*M.
Let Rapea : O(n, M) — R be the corresponding lift:

~ 1. . .
Q%Aqap = ERabcd O°AGY

Let Rabodier...e, : O(n, M) — R be the lift of VPR:

N N

A e o
dRabcd;e1...ep,1 = Rapbcad;e...e,W0 " + (Aa - R)abcdl



Equivalence problem for metric tensors

» Set RP = @*(R")* @ - -- @ @*P(R")*
Let R : O(n, M) — RP be the composite lift of R, VR, ..., V°R:

A

R(p) = (Habcda Rabcd;e» s Rabcd;e1...ep)

» Say that (M, g) is regular if the rank of R®) is constant for all p.
Let pp := rank R®). Note: pp < ppy1 < dim O(n, M) = n(n+ 1)/2
Let g = gu be the smallest integer such that pg—1 = pq.

Call g — 1 the order of (M, g).

» Theorem [Cartan,Olver]: Suppose that (M, g) is regular. Then
R(@ : O(n, M) — R4 parameterizes a classifying manifold.
Manifolds (M, g) and (M, g) are locally isometric iff gy = g and
R(@ and R(® parameterize overlapping classifying manifolds.

» Proposition: gy < n(n+ 1)/2 = dim O(n, M).

Question: for a fixed signature and dimension, what is the
maximum order?



Main result - 4 dimensions

Theorem (Milson,Pelavas): for 4-dimensional Lorentzian manifolds, g < 7.
The bound is sharp. All order 6 metrics that don’t pseudo-stabilize are locally

equivalent to g = w'w? — w®w* where

w' = (db/z +i(adb+ da) — € (a+ i (32 +Co/2— 5/4)) ds) /C1,

WP (db/z —i(adb+ da) — & (a iy (32 +Co/2— 5/4)) ds) /G,
W® = €ebas,
w* = e7*dt — (C,/C?)(da+ adb)+
+ (F(s)efs" —6ae 2t +(C/C) (a2 + Co/4— 5/8) eb) ds.
Note 1: the above metric is an exact solution for coupled gravity and
null-radiation on an anti-deSitter background.

Note 2: there may or may not exist order 6 metrics that pseudo-stabilize
(ongoing research).



Main result - 3 dimensions

Theorem (Milson, Wylleman): For 3-dimensional Lorentz manifolds, g < 5.
The above bound is sharp. All order 4 metrics, up to local equivalence,
belong to one of the following 3 classes:

(ds;)? = 2 (x du + dw)? + du (f,-du— T’1dx) . i=1,2, T#0,
(ds3)? = 2aw?® + 2du((¢(u) + 2v + Cx*)du — dx), C #0,

where C, K, T are real constants, where ¢(u) is a real-valued function, and
where

SO 6(0)) (K = 2)x -+ (K +2)p(w) — 6/ (u),

b= —xX2+|T|2x + |T|7"e*"™ + ¢(u)

fi=KT ("™ — 1)+



Talk overview

Joint work with Nicos Pelavas (4D) and Lode Wylleman (3D)
Equivalence problem: Cartan (1926, 1946), Karlhede (1980)
Curvature classification: Petrov (1954,1961), Penrose (1960),

Curvature homogeneity: Singer (1960), Bueken, Boeckx, Djoric,
Gilkey, Kovalski, VanHecke (1996,2000,2008)

The Karlhede algorithm

Curvature homogeneity

Petrov type

Pseudo-stabilization and other technicalities
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. Set the order of differentiation ¢ to 0.

. Calculate the derivatives of the Riemann tensor up to the gth.

. Find the canonical form of the Riemann tensor and its derivatives.

. Fix the frame as far as possible by this canonical form, and note the

residual frame freedom (the group of allowed transformations is the
linear isotropy group fq). The dimension of fq is the dimension of
the remaining vertical part of the frame bundle.

5. Find the number t; of independent functions of space-time posi-
tion in the components of the Riemann tensor and its derivatives in
canonical form. This tells us the remaining horizontal freedom.

6. If the isotropy group and number of independent functions are the
same as at the previous step, let p + 1 = ¢ and stop; if they differ
(or if ¢ = 0) increment g by 1 and go to step 2.

NG XN

The space-time is then characterized by the canonical form used, the
successive isotropy groups and independent function counts and the values
of the non-zero Cartan invariants. Since there are ¢, essential space-time
coordinates, clearly the remaining 4 — ¢, are ignorable, so the isotropy
group of the space-time will have dimension s = dim I}, and the isometry
group has dimension r = s + 4 — t, (see e.g. Karlhede (1980b)). To com-




Curvature normalization and regularity

» Definitions. Let S ¢ R® be a submanifold, set G = O(n) and let
H = Gs, meaning that H = {X € G : X(S) C S}.
Say that C is an H-kernel if H is a closed subgroup of G and if the
mapping S xy G — G(S) is a diffeomorphism.
Say that S is a normalizing cross-section if it is an H-kernel and if in
addition H fixes S point-wise.
Note: If we added the assumption that G(S) is an open subset of R,
then S would be a slice [Palais].

» Proposition. Let S ¢ RP be an H-kernel where H = Gs, G = O(7) as
above. Suppose that the image of R is contained in G(S). Then

O(n, M, S) := (R®)(S)
is a principal H-bundle over M, and the embedding
O(n, M, S) — O(n, M) is a reduction of structure from G to H.
Moreover, R®)|O(n, M, S) is constant in the fibres and descends to a
well-defined mapping Fx’é”) : M — S (called Cartan invariants).
EqUiVa|ent|Y, Rép) = ﬁ’)(p)|w = (Rabcdy Rabcd;e: EER) Rabcd;ep“ep) is
independent of the choice of w : U — O(n, U, S), U C M.

» Example: diagonalize the Ricci tensor to find a preferred coframe
(maximal reduction of the structure group).



The Karlhede algorithm

» Definition. Call (M, g) p-curvature regular if there exists a normalizing
cross-section S C R” such that img R® c G(S), where G = O(n).

» Proposition: Suppose that (M, g) is p-regular and p-curvature regular.
Let Fa’(sp) : M — S be the normalized curvature mapping into a
normalizing cross-section S C R”. Then, 7, := rank R‘Sp) is constant and
independent of the choice of S. Moreover, setting v, = dim Gg,

pp=1p+dmMG—-dmGs =1 +n(n—1)/2—p
Moreover, if ¢ — 1 is the order of (M, g), then R(Sq) M — Sisarank 74
parameterization of a classifying manifold for (M, g).
The integer n — 74 + 14 is the dim. of the isometry group, with v4 the
dim. of the isotropy subgroup and n — 74 the dim. of the orbits.

» Algorithm: S©@ — s ... 5 5@ 3 tower of normalizing
cross-sections with structure groups G = Gg:(';)” and G = O(7).
Integer segences: v, = dim G (non-increasing) and 7, = rank F?g(p)
(non-decreasing) with q the smallest integer such that v4_1 = v4 and
Tg—1 = Tg-
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Introduction

The results of this paper were motivated by this question: How alike
must two points of a Riemannian manifold be in order to conclude that the
manifold is homogeneous, i.e., that there is a transitive group of isometries
of the manifold? One must of course assume that the manifold is complete,

In this paper we eliminate the local Lie group hypothesis and in fact prove
homogeneity under an infinitesimal rather than a local hypothesis. Specifi-
cally there exists an integer & such that if for every two points the curvature
and its first & covariant derivatives at m, and m, are the same, then the
manifold is homogeneous. If the dimension of the manifold is 4, it turns out
that k < 4d(d—1). At any rate, since a local isometry preserves the curvature
and all its derivatives, we obtain as a corollary that a weakly locally homo-
geneous space is homogeneous (see the Corollary of the Main Theorem).



Curvature homogeneity

>

Definition. Say that (M, g) is k-curvature homogeneous (CHy) if for
every x, y € M there exists an isomorphism ¢ : (TxM, gx) — (T,M, gy)
such that . .

»*V'R, =V'Ry, j=0,1,...,k
We say that (M, g) is properly CHy if it is CH, but not CHyc1.
Equivalent definition 1: there exists a cover by moving coframes
w : U — O(n, U) with constant B®)|w = (Rapcd, Ravcde; - - - » Rabedie, ..e, )
Equivalent definition 2: CHy iff 7, = 0.
Properly CHy iff k is the smallest integer for which 74,4 # 0.
Theorem [Singer] A manifold is locally homogeneous iff it is curvature
homogeneous, i.e., CHy for all k.
Definition: for a fixed dimension and signature, the Singer number is
the maximum value of k such that there exists a proper CHy. In other
words, the test for homogeneity requires

R® = (Rapod, Ravcdie: - - - » Ravcdie, ..e,., ) Where k is the Singer number.

Observation: the manifolds of maximal order turn out to be proper CHy
manifolds that realize the Singer number. For such manifolds we have

> > >y =u1=0, 0=1m=7m1= =7 < Tkt1-

Concusion: The Singer number is the key to manifolds of maximum
order. Classify proper CH, where k is as large as possible.



The 3D classification

Theorem: The Singer number for 3-dimensional Lorentzian geometry is
k = 1. The unique (up to a 3D-Lorentz transformation) proper CH;
geometries satisfy the following structure equations:

dw’ = —Tw’ A W'

dw' = —4TW® A WP
dw? = W Aw' 4+ 260® A w? — Tw' Aw?

deAw® = TP Aw' + Cw® A w?

Note 1: the metric is g = —2ww? + J(w')?. The curvature components
(Rabeds Rabca:e) are functions of the constants T, C.

Note 2: rank R® = 1 with 2nd order curvature scalars (Rapode,e,) functions
of C, T, e where the latter is a differential invariant with de # 0.

Note 3: By direct calculation: rank R® = 2, rank R*®) = 3. Therefore
(wonderful coincidence!) the proper CHy metrics have maximal order.

Note 3: the 3 classes of exact solution correspond to the cases

() T,C#£0;(ii) T#0,C=0; (ili) T=0,C #£0.



The 4D classification

Theorem: The Singer number for 4-dimensional Lorentzian geometry is
k = 2. The unique (up to Lorentz transformation) proper CH> geometries
satisfy the following structure equations:

dw' = Crw' Aw? —i(Co —3) (w' +w?) Aud,

dw® = —Crw' Aw? +i(Co — 2) (w' +w?) A®,

dw® = Cy (W' + w?) A,

dw* = —2iCw' Aw? — iv(w' — W?) Aw® = 3C) (w' +w?) Aw?,
dv AW’ = ((31/2) G2 (' — w?) = 3Civ (w' + W) — 3Ciw*) AW’

Note 1: the metricis g = w'w? — w3w* where w', w? are complex conjugate,
while w®, w* are real. The curvature components (Rabeds Raved:e, Raved;ere, )
are functions of the real constants Cy, Co.

Note 2: rank R® = 1 with third order curvature scalars (Rabed:eq epeq) functions
of Cy, Co, v, where the latter is a scalar invariant with dv # 0.

Note 3: By direct calculation: rank R® = 2 rank R®) = 3, rank R® = 4.
Therefore (wonderful coincidence!) the proper CH, metrics have maximal

order.



The Karlhede bound and the 4D Petrov type

>

The Penrose-Petrov classification: orbit structure of the Weyl tensor in
4-dimensional Lorentzian geometry

> Go = Aut(R©) where R® = R®|0O(n, M, S) with S a normalizing c.s.
» Rank formula: po = 70 + dim O(n) — dim Gy

rank lower bound: po > n(n—1)/2 — 1y
Karlhede bound: n(n+1)/2 > pg—1 > po+q — 1

g—1<n+uw

Double cover SL,C — SO(1, 3).
As irreps, Weyl, = P4C (complex polynomials of degree < 4).
Petrov Type Root Structure 1y  Karlhede bound  Singer number

| (1111) 0 q<5 k<0
I (211) 0 qg<5 k<0
If (31) 0 q<5 k<0
D (22) 2 q<7 k<2
N (4) 2 q<7 k<2
o) 3 g<8 k<2

The search for maximal order manifolds and the Singer number narrow
to Petrov type D, N, O. The type O bound comes from automorphism
groups of the Ricci tensor; this possibility is easily eliminated.



The 3D Petrov type

» Double cover SL,R — SO(1, 2).
As irreps, Riems =2 Sym? R® 2 1 @ P4R (real polynomials of degree < 4).

Petrov Type Root Structure Segre Type 1y g< k<
I (1111) {11,1} 0 4 0
V4 (ZZ11) {1z2} 0 4 0

1zZ (212221 2,) {11,1} 0 4 0
I (211) {2,1} 0 4 0
4 (222) {2,1} 0 4 0
11} (31) {11),1} 0o 4 0
D (22) {1(1,1)} 1 5 1
DZ (Z22%) {3} 1 5 1
N (4) {(21)} 1 5 1
0 .

» The search for maximal order manifolds and the Singer number narrow
to Petrov types D, DZ N



Some Technicalities

» Karlhede Algorithm: S© — S — ... — S(@ a tower of normalizing
; ; _ nlp—1) —1) _

cross-sections with structure groups G = G&,)" and G = O(n).
Integer segences: v, = dim G’ (non-increasing) and 7, = rank R%,,
(non-decreasing) with g the smallest integer such that v4—1 = v and
Tqg—1 = Tgq-

» Pseudo-stabilization: vy = vp1, 7 < Tp41

» A re-formulation:

» normalize Raueq to reduce the structure group from G_1 = O(n) to
Go = Aut(R).

» this reduction gives a constrained, overdetermined equivalence
problem. The essential torsion consists of certain connection
scalars, which also figure in the components of Rapeq.e.

» if the essential torsion is Gy invariant, the structure group cannot be
reduced. However, if functionally independent invariants arise, the
equivalence method does not terminate.



General structure equations

0o -1 0 X fo  fz 0
()= (-1 © oI, (rab): —2l 01 0 2[12

0 0 12 0 —for —fo
da’ = —foz AG° — ﬁ12 AG dfm = —rm A ﬁog + ﬁm
dL:)1 = 2?01 A (:)O + 2?12 A &\)2 dﬁog =2 f01 A ﬁ12 + Qog
do? = ﬁm A +f02/\6_\)2 df12 = 7?02/\|A_12+Q12

Qor = %wow"/\a‘ + W Q% A QP+ (Wa/2 + R/12) 0T A GP
Qoo = Wi Q° A&+ (W2 — R/6) 0° A&7 + Wad' A &°

Qio = (W2/2 + R/12)° NG + W3 0® A0 + %\Ihu:ﬂ AGP

Note 1: the Bianchi relations not shown
Note 2: R is the Ricci scalar. The curvature components transform like

V(2) = Wo + W14z + V62" + WgdZ® + W, 2*

under the action of SLoR



The type D, CHy reduction
The normalization: Vo = ¥y = W3 = W, = 0; R, V, are invariant constants.
Rank: £o :27 vy = 1, =0
Reduction (after applying integrability conditions):

o1 = kW + Twz, Mo = 70° + vw?
Reduced structure equations:
dw® = —To2 Aw® — (Tw° + vw?) A W?
dw' = —470° A WP
dw® = o2 A w? + (5w’ + 70?) A W'
dloe = (2W2 — R/6 — 2k + 27%)° A WP
di AW’ 4+ dr A w? = 26To2 AW’ + (Wa/2 + R/12 — kv 4+ 7°)w' A WP
dr AW +dv Aw? = —20Tge Aw? + (W2/2 + R/12 — kv 4 72)w® Aw!

Note 1: Bianchi relations are satisfied identically
Note 2: the remaining freedom is the 1-dimensional group of boosts
(diagonal SL, transformation)

- 1 2 2
W=a W W =w' W = ad’ a#0



Type D, CH4 reduction

» Generic subcase: ,v # 0. Normalize k — 1.
The CH; constraint: 7, v constant
After imposing integrability conditions: p1 = p> =3, 1 =0, 11 =0

dw® = —(r0? + ) Aw' dw' = =470 AW? dw? = (W + TP AW

where 7, v are constants. Invariant metric on a Lie group.

» Singular subcase: s # 0, = 0. Normalize x — 1. The CH; constraint:
7 constant Note: v ++ « by a Lorentz transformation
Rank: po = 2,p1 :37p2 :4,V1 ZO,T1 20,7'2 =1
After applying integrability conditions get the CH; structure equations of
the 3D Theorem. Generically, these metrics have order 4 (maximal)

» Stabilization subcase: k =v =0
After imposing integrability conditions, pseudo-stabilization isn’t possible
Get a 0th order homogeneous space w/ 1d isotropy
p=p1=2, =vi=1,10=11=0
du® = —To2 A P AW dw' = —47W® AW
dw? =T Aw? + 72 A w1, dlge = (BW2 + 47'2)<,u0 A w?
R = —6W, — 1272, W,, 7 constant



Concluding remarks

» The Karlhede bound is sharp for 3D and 4D Lorentzian geometry
(g = 5 and q = 7) respectively.

» The corresponding maximal order manifolds can be classified
explicitly (a bit more work remains to be done in the 4D case)

» Multiple communities investigating equivalence of metric tensors:
Cartan equivalence method, GR/Karlhede algorithm, curvature
homogeneity/Singer number.

» The key requirement is an understading of the orbit structure of
the Rieman curvature tensor. At n > 4, the orbit structure of the
Weyl tensor representation is the key object.

» Curvature normalization reduces the structure group and permits
further analysis.

» There is an important connection between the Singer number
and maximal order. Metrics that realize the Singer number are
natural candidates for the maximal order condition.



