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This talk is based on joint work with Rod Gover (Auckland)
and Matthias Hammerl (Vienna).

Cartan geometries give a conceptual description of manifolds
endowed with certain geometric structures as “curved
analogs” of a homogeneous space. They can also be
interpreted as particularly nice reductions of higher order
frame bundles.

Holonomy reductions of a Cartan geometry can be defined
parallel to the case of principal connections, but they exhibit a
richer structure, in particular giving rise to a decomposition of
the manifold in question into “curved orbits”.

Examples of such reductions can be obtained from parallel
sections of so–called tractor bundles. In the special case of
parabolic geometries, such parallel sections are related via the
machinery of BGG sequences to solutions of certain geometric
overdetermined systems.
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Let G be a Lie group and P ⊂ G a closed subgroup. Then the
natural projection p : G → G/P is an P–principal bundle, and one
has the left Maurer–Cartan form ωMC ∈ Ω1(G , g), where g is the
Lie algebra of G . The left actions of elements of G can be
characterized as automorphisms of this principal bundle which are
compatible with ωMC . This motivates:

Definition

Let M be a smooth manifold with dim(M) = dim(G/P). A Cartan
geometry of type (G ,P) on M is a principal P–bundle p : G → M
together with a Cartan connection ω ∈ Ω1(G, g), i.e.

1 ω(u) : TuG → g is a linear isomorphism ∀u ∈ G.

2 For the principal right action rg by g ∈ P we have
(rg )∗ω = Ad(g−1) ◦ ω.

3 For the fundamental vector field ζX generated by X ∈ p we
have ω(ζX ) = X .
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Relation to frame bundles

Via the adjoint action, P acts on g and p ⊂ g is a P–invariant
subspace. Thus there is an induced action Ad : P → GL(g/p). Let
K be the kernel of this homomorphism and put P := P/K .

G/K → M is a principal P–bundle.

projecting the values of ω to g/p, the resulting form descends
to a strictly horizontal, P–equivariant one–form
θ ∈ Ω1(G/K , g/p) and g/p = Rdim(M).

Thus we obtain an induced first order structure on M with
structure group P.

More generally, one associates to g ∈ P the k–jet at o = eP of the
left action of g . If this map is injective for some k , this makes P
into a subgroup of the kth jet group. One shows that, via ω, G
defines a reduction of the kth order frame bundle of M.
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Examples

(1) For n ≥ 2 put G = Euc(n) = O(n) nRn and P = O(n) ⊂ G .
Then G/P is Euclidean space, g/p = Rn and Ad is the standard
representation of O(n) on Rn. Hence a Cartan geometry
(G → M, ω) induces a first order O(n)–structure, which is
equivalent to a Riemannian metric on M. The o(n) component of
ω defines a metric connection on TM, from which ω can be
recovered.

Via the orthonormal frame bundle and the Levi–Civita connection,
one can conversely associate a Cartan geometry of type (G ,P) to
any Riemannian metric on M. This induces an equivalence of
categories between Riemannian manifolds and torsion free Cartan
geometries.
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(2) Put G = PGL(n + 1,R) and let P ⊂ G be the stabilizer of a
line in Rn+1, so P ∼= GL(n,R) nRn∗. Then G/P = RPn,
g/p = Rn, P/K = GL(n,R) and Ad is the standard representation.
Thus the first order structure underlying a Cartan geometry of type
(G ,P) contains no information. Such a Cartan geometry turns out
to be equivalent to a projective equivalence class of linear
connections on TM.

The subgroup P ⊂ G in this example is parabolic in the sense of
representation theory. For parabolic subgroups in semisimple
groups there is a general theory, initiated by N. Tanaka, of
equivalence of Cartan geometries (satisfying a condition on the
curvature) to underlying structures. (“Parabolic Geometries”)
This leads to a description of conformal structures, hypersurface
type CR structures, almost quaternionic structures, path
geometries, quaternionic contact structures, and several types of
generic distributions as Cartan geometries.
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Remarks

The theorems establishing existence of canonical Cartan
connections and equivalence of categories between Cartan
geometries and underlying structures are often difficult and
technically demanding.

The curvature K = dω + 1
2 [ω, ω] of the Cartan connection is

a basic and complete invariant of a Cartan geometry.

I want to view this just as the beginning of the story, and
explain some of the things one can do once one has a
canonical Cartan connection available, in particular in the
parabolic case. Hence the description as a Cartan geometry
will always be considered as being given in the sequel.
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Holonomy of Cartan connections

Since ω : TuG → g is injective, there are no curves in G which are
parallel for ω. To still get a notion of holonomy, one can connect
to the classical case of principal connections:

Let (G → M, ω) be a Cartan geometry of type (G ,P) then:

G̃ := G ×P G is a G–principal bundle

∃! G–principal connection ω̃ on G̃ such that ω̃|TG = ω.

One then defines Hol(ω) := Hol(ω̃) ⊂ G .

Recall that Hol(ω̃) ⊂ G is defined up to conjugacy only. While this
is harmless for principal connections it becomes a very important
issue here, since a conjugation does not fix the subgroup P in
general.
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holonomy reductions

In view of the conjugacy issue, it is better not to use a subgroup of
G to define a holonomy reduction but rather a homogeneous space
O of G . (For example, one would use the space of inner products
on Rn instead of O(n) ⊂ GL(n,R) to describe the holonomy
reductions of a linear connection given by a parallel metric.)

Form the associated bundle G ×P O.

Since this can be viewed as G̃ ×G O, it inherits a canonical
(non–linear) connection from ω̃.

A holonomy reduction of type O of a Cartan geometry
(G → M, ω) is a section of G ×P O which is parallel for this
induced connection.
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By general principles, sections of G ×P O ∼= G̃ ×G O can be either
identified with P–equivariant functions G → O or with
G–equivariant functions G̃ → O. In the latter picture, a function
corresponds to a parallel section if and only if it is constant along
any curve which is horizontal for ω̃. This can be used to clarify
holonomy reductions of the homogeneous model:

The bundle G ×P G is canonically trivial via
(g1, g2) 7→ (g1P, g1g2) and ω̃ is the flat connection induced by
this trivialization.

Hence any element α ∈ O determines a unique holonomy
reduction of (G → G/P, ωMC ) of type O corresponding to
the equivariant function G → O defined by sα : G → O,
sα(g) := g−1 · α, and any reduction is of this type.
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P–types and curved orbit decomposition

Let (p : G → M, ω) be a Cartan geometry of type (G ,P) and
consider a holonomy reduction of type O corresponding to the
equivariant function s : G → O.
Then for any x ∈ M, the image s(Gx) ⊂ O of the fiber
Gx = p−1(x) is a P–orbit in O, called the P–type of x .

Let O = ∪Oi be the decomposition of O into P–orbits.

Then there is a corresponding decomposition M = ∪Mi

according to P–types. (Some of the Mi may be empty.)

For the reduction sα of the homogeneous model constructed
before, consider the stabilizer Gα ⊂ G of α. Then
g1P, g2P ∈ G/P have the same P–type if and only if they lie
in the same Gα–orbit. In particular, on may identify O/P with
the space of Gα–orbits in G/P.
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The properties of the decomposition M = ∪Mi are studied using a
local diffeomorphism (the “comparison map”) between the curved
geometry and an appropriate holonomy reduction of G → G/P.
This is constructed using normal coordinates induced by Cartan
connections. One shows:

The comparison map intertwines the decompositions
M = ∪Mi and G/P = ∪(G/P)i . In particular, each Mi is an
initial submanifold of M.

For α ∈ Oi let Gα ⊂ G be its stabilizer and put
Pα := Gα ∩ P. Then Mi inherits a canonical Cartan geometry
of type (Gα,Pα) generalizing Gα → Gα/Pα = Gα · eP ⊂ G/P.

The curvature of this induced geometry can be explicitly
described in terms of the curvature of ω.
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A simple way to define a holonomy reduction of a principal bundle
is by a parallel section of an associated vector bundle. In the case
of a Cartan geometry (p : G → M, ω) of type (G ,P), we have to
use a vector bundle of the form G ×P V = G̃ ×G V, for a
representation V of G (“tractor bundles”).

Such sections can be either described by P–equivariant
functions G → V of by G–equivariant functions G̃ → V.

In the latter picture, parallel sections correspond to functions
which are constant along ω̃–horizontal curves.

For a parallel section s, the image of G̃ in V hence is a
G–orbit O ⊂ V (“G–type of s”), which defines the type of
holonomy reduction determined by s.

The images of the fibers of G in O are P–orbits, which define
the P–types of points.
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In the case that G is semisimple and P ⊂ G is parabolic, one may
assume that V is an irreducible representation of G . Then V
inherits a canonical P–invariant filtration V ⊃ V1 ⊃ · · · ⊃ VN ,
such that Vi/Vi+1 is a completely reducible representation of P for
each i and V/V1 =: H0 is even irreducible.

The bundle H0 := G ×P H0 is naturally a quotient of G ×P V,
so any section s of the tractor bundle induces Π(s) ∈ Γ(H0).

If s is parallel, then Π(s) lies in the kernel of a natural
differential operator defined on Γ(H0) which gives rise to a
geometric overdetermined system.

In this way, one obtains twistor spinors and almost Einstein
scales in conformal geometry, special conformal Killing forms
and Killing tensors, and special infinitesimal automorphisms
for all parabolic geometries.
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Consider a parallel section s of G ×P V of G–type O. Since
V1 ⊂ V is P–invariant, also O ∩ V1 and its complement in O are
P–invariant and hence a union of P–types. By construction, for
x ∈ M, we have Π(s)(x) = 0 if and only if the P–type of s at x
lies in O ∩ V1, so the zero set of Π(s) is a union of P–types.

Via comparison, s is related to a (local) parallel section of
G ×P V→ G/P. The latter sections can be easily described
explicitly.

Hence the zero set of Π(s) cannot look worse than the one of
this model section.

The P–types provide a stratification of the zero set of Π(s)
which again can look at most as complicated as the one for
the model section.
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Ricci flat connections

Put G := SL(n + 1,R), P ⊂ G the stabilizer of a ray in Rn+1 (so
one gets oriented projective structures) and V := R(n+1)∗. Then
V \ 0 is one G–orbit, which splits into three P–orbits. Two of
these are open, one is closed and coincides with V1 \ 0. For a
parallel section s, the underlying section σ := Π(s) is a density,
which satisfies a natural second order equation, and one gets:

The curved orbit decomposition has the form
M = M+ ∪M0 ∪M− with M± ⊂ M open and M0 an
embedded hypersurface which is the zero set of σ.

On M±, σ determines a Ricci flat connection in the projective
class, which has some completeness property.

The hypersurface M0 ⊂ M is totally geodesic and thus
inherits a projective structure.
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Fefferman spaces

Put G := SO(2p + 2, 2q + 2), P the stabilizer of an isotropic line
(so one gets conformal Riemannian structures of signature
(2p + 1, 2q + 1)). In V := so(2p + 2, 2q + 2) there is the G–orbit
O of orthogonal complex structures on R2p+2,2q+2.

For a parallel section s of G ×P V of this G–type, the
underlying section Π(s) is a special conformal Killing field k
on M.

Since O is also a single P–orbit, k is nowhere vanishing and
thus defines a one–dimensional foliation of M.

One then proves that a local leaf space of this foliation
inherits a CR structures and M is locally conformally isometric
to the Fefferman space of this CR structure.
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Almost Einstein scales

Consider conformal structures of signature (p, q), so
G = SO(p + 1, q + 1) and P ⊂ G the stabilizer of an isotropic line
and V = Rp+1,q+1. Then H0 is a density bundle. G–types in V are
the level sets of 〈v , v〉 for the G–invariant inner product on V, and
the essential bit is the sign of 〈v , v〉.

Any parallel section s ∈ Γ(G ×P V) has constant norm h(s, s)
for the tractor metric h and σ = Π(s) satisfies the conformally
invariant equation ∇a∇bσ + Pabσ = 0.

For h(s, s) 6= 0, the curved orbit decomposition is
M = M0 ∪M1 with M0 = Z(σ) an embedded hypersurface.

On M1, σ determines an Einstein metric in the conformal
class, while M0 inherits a canonical conformal structure, and
locally around M0 one obtains a Ponicaré–Einstein metric.
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Klein-Einstein structures

This is an example for projective structures, which produces results
which are similar in flavor to (but different from) Poincaré–Einstein
metrics.
Take G = SL(n + 1,R), P ⊂ G the stabilizer of a ray in Rn+1 and
V = S2R(n+1)∗. Then H0 is a density bundle, and G–types are
determined by rank and signature.

If s is a parallel section, whose G–type is non–degenerate,
then σ = Π(s) satisfies the projectively invariant equation

∇(a∇b∇c)σ + 4P(ab∇c)σ + 2(∇(aPbc))σ = 0

P–types are determined by rank and signature of the
restriction of the metric determined by s to the distinguished
line subbundle in G ×P Rn+1.
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The curved orbit decomposition has the form
M = M+ ∪M0 ∪M− with M± open and M0 an embedded
hypersurface.

On M±, σ determines a connection ∇ in the projective class,
for which Pab is symmetric, non–degenerate and satisfies
∇aPbc = 0. Hence Pab defines a pseudo–Riemannian metric
(whose signature is determined by the signature of s) with
Levi–Civita connection ∇, and which must be Einstein.

If M is compact, then these Einstein metrics on M± are
geodesically complete.

M0 canonically inherits a conformal structure (whose
signature is determined by the signature of s).
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