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THE PROBLEM

SEPARATION OF VARIABLES

GENERAL PROBLEM

Classify all coordinate systems in which a given partial differential
equation is solvable by a separation of variables.

here: Hamilton-Jacobi equation

1
2g ij ∂W

∂x i
∂W
∂x j + V = E



THE PROBLEM

INTEGRABLE KILLING TENSORS

(M,g) Riemannian manifold

DEFINITION

K Killing tensor :⇔

Kβγ = Kγβ ∇(αKβγ) = 0

K integrable :⇔

∃ coordinates xα in a neighbourhood of almost every point:

K β
γ ∂β = λ(x)∂γ

i. e. coordinate vectors = eigen vectors of K
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THE PROBLEM

VIA INTEGRABLE KILLING TENSORS

THEOREM (STÄCKEL, EISENHART, BENENTI)
Every orthogonal coordinate system in which the Hamilton-Jacobi
equation separates is given by

1 an integrable Killing tensor K
2 with pointwise simple eigen values
3 compatible with the potential: d(KdV ) = 0

FIRST STEP

Determine integrable Killing tensors.

classical approach: Moving Frames
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THE PROBLEM

NIJENHUIS INTEGRABILITY

DEFINITION

Nijenhuis torsion:

N(X ,Y ) := K 2[X ,Y ]− K [KX ,Y ]− K [X ,KY ] + [KX ,KY ]

Nα
βγ = Kα

δ∇[γK δ
β] +∇δKα

[γ K δ
β]

THEOREM (TONOLO, SCHOUTEN, NIJENHUIS ’51)

K integrable ⇔


0 = Nδ

[βγgα]δ (NI)

0 = Nδ
[βγKα]δ (NII)

0 = Nδ
[βγKα]εK ε

δ (NIII)

PRECISE PROBLEM

Solve (NI)–(NIII) for Killing tensors on S3.
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THE PROBLEM

BENENTI TENSORS

THEOREM (MATVEEV-TOPALOV ’98)

g′ ∼ g ⇒ K :=

(
det g
det g′

) 2
n+1

g′ Killing tensor for g

EXAMPLE

f : Sn → Sn A ∈ GL(n + 1)

x 7→ f (x) := Ax
‖Ax‖ f ∗g ∼ g

DEFINITION

K Benenti Killing tensor

PARTICULAR SOLUTION

Benenti Killing tensors are integrable.
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TRANSLATION

ALGEBRAIC CURVATURE TENSORS

DEFINITION

Ra1b1a2b2 ∈ (V ∗)⊗4 algebraic curvature tensor on V :⇔
1 antisymmetry:

Rb1a1a2b2 = −Ra1b1a2b2 = Ra1b1b2a2

2 pair symmetry:
Ra2b2a1b1 = +Ra1b1a2b2

3 Bianchi identity:

Ra1b1a2b2 + Ra1a2b2b1 + Ra1b2b1a2 = 0

algebraic curvature tensors Ra1b1a2b2 = GL(V )-irrep a1 a2
b1 b2

?
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TRANSLATION

ALGEBRAIC DESCRIPTION OF KILLING TENSORS
ON CONSTANT CURVATURE MANIFOLDS

Sn ⊂ V Isom(Sn) = O(V ) ⊂ GL(V )

THEOREM (MCLENAGHAN, MILSON & SMIRNOV ’04)
There is an isomorphism of O(V )-representations

Killing tensors K on Sn ←→ algebraic curvature tensors R on V

Kx (v ,w) := Ra1b1a2b2xa1xa2vb1wb2

x ∈ Sn v ,w ⊥ x

(and similarly for all constant curvature manifolds).
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TRANSLATION

THE KULKARNI-NOMIZU PRODUCT

⊗ ∼= ⊕ ⊕

↓

DEFINITION

Kulkarni-Nomizu product h 7 k of symmetric tensors ha1a2 and kb1b2

(h 7 k)a1b1a2b2 = ha1a2kb1b2 − ha1b2kb1a2 − hb1a2ka1b2 + hb1b2ka1a2



TRANSLATION

THE METRIC & BENENTI KILLING TENSORS
AS ALGEBRAIC CURVATURE TENSORS

EXAMPLE

metric
g

←→
algebraic curvature tensor

1
2g 7 g

EXAMPLE

Benenti Killing tensor
KA

←→
algebraic curvature tensor

1
2(Ag) 7 (Ag)

where

A ∈ GL(V ) (Ag)(v ,w) := g(Av ,Aw)

Benenti Killing tensors = GL(V )-orbit of the metric
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TRANSLATED PROBLEM

ALGEBRAIC INTEGRABILITY CONDITIONS

THEOREM (–)
A Killing tensor on Sn is integrable⇔
the corresponding algebraic curvature tensor Ra1b1a2b2 satisfies

a2 b1 d1
b2
c2
d2

?

gijR i
b1a2b2

R j
d1c2d2

= 0

a2 a1 b1 c1 d1
b2
c2
d2

?

gijgklR i
b1a2b2

R j k
a1 c1R l

d1c2d2
= 0

(and similarly for all constant curvature manifolds).



TRANSLATED PROBLEM

ADVANTAGES
OF THE ALGEBRAIC APPROACH

1 simple algebraic equations instead of non-linear PDE system
2 third equation redundant!
3 valid for all (pseudo-)Riemannian constant curvature manifolds
4 Riemann tensors are intensively studied.
5 new insight into integrability from

I representation theory
I algebraic geometry
I geometric invariant theory
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SOLUTION

HODGE DECOMPOSITION
OF ALGEBRAIC CURVATURE TENSORS

S3 ⊂ V dim V = 4

algebraic curvature tensors as a symmetric 6× 6 matrix

Ra1b1a2b2 ←→ Ra1b1
a2b2
∈ End(Λ2V )

Hodge decomposition

Λ2V = Λ2
+V ⊕ Λ2

−V

block decomposition

R =

 W+ T

T t W−

+ s
12 I

W T
+ = W+ W T

− = W− tr W+ = tr W− = 0
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SOLUTION

INTEGRABLE KILLING TENSORS ON S3

AS AN ALGEBRAIC VARIETY

THEOREM (–)
1 K integrable ⇒ ∃ orthonormal basis of V such that

R =


w1−t1

w2−t2 0
w3−t3

w1+t10 w2+t2
w3+t3

 ∆1 := w2 − w3

2 K integrable ⇔ det M = tr M = 0

M =

∆1 −t3 +t2
+t3 ∆2 −t1
−t2 +t1 ∆3

 linear determinantal variety

V ⊂ P4
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SOLUTION

STÄCKEL SYSTEMS
AND SEPARABLE COORDINATE SYSTEMS

THEOREM (STÄCKEL)
There is a bijective correspondence

Stäckel systems ←→ separable coordinate systems

DEFINITION

A Stäckel system is a vector space spanned by n linearly independent
integrable Killing tensors which mutually commute.

FACT (–)[
K , K̃

]
= 0 ⇔

b1 b2 d1 d2
a2
c2

?

gijR i
b1a2b2

R̃ j
d1c2d2

= 0
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SOLUTION

STÄCKEL SYSTEMS
AS A SUBVARIETY OF A FANO VARIETY

FACT (–)[
K , K̃

]
= 0 ⇔

b1 b2 d1 d2
a2
c2

?

gijR i
b1a2b2

R̃ j
d1c2d2

= 0 (∗)

Stäckel systems = projective lines on V
variety of projective lines on V = Fano variety F1(V)

linear determinantal variety V ⊂ full determinantal varietyM
F1(V) ⊂ F1(M)

F1(M) well understood for 3× 3 matrices
I same kernel
I same image
I . . .

simply check (∗) instead of solving (∗)
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SOLUTION

STÄCKEL SYSTEMS
ALGEBRAICALLY

FACT (–)
Stäckel systems correspond to projective lines of matrices

M =

∆1 −t3 t2
t3 ∆2 −t1
−t2 t1 ∆3

 with tr M = det M = 0

annihilating a fixed vector v = (v1, v2, v3).

generically: projective line through 0 −v3 v2
v3 0 −v1
−v2 v1 0

 and

v2
2 − v2

3 −v1v2 v3v1
v1v2 v2

3 − v2
1 −v2v3

−v3v1 v2v3 v2
1 − v2

2


V = join of projective plane and projected Veronese variety in P4
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SOLUTION

EQUIVARIANT DESCRIPTION

This completely solves our problem:

THEOREM (–)
A generic Stäckel system consists of (multiples of)

I Benenti-Killing tensors of the form

Adj(T + λg) 7 Adj(T + λg) λ ∈ R

I and a unique trace free Ricci-Killing tensor

T 7 g

A non-generic Stäckel system is of the form

λ1K1 � ∗K1 + λ2K2 � ∗K2 + λ3K3 � ∗K3

with (λ1, λ2, λ3) ⊥ ~n ⊥ (1,1,1) for some ~n ∈ R3
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λ1K1 � ∗K1 + λ2K2 � ∗K2 + λ3K3 � ∗K3

with (λ1, λ2, λ3) ⊥ ~n ⊥ (1,1,1) for some ~n ∈ R3



SOLUTION

SEPARABLE COORDINATES

Jacobi elliptic coordinates
Lamé rotational coordinates
Lamé subgroup reduction
spherical coordinates
cylindrical coordinates

compare Eisenhart (1934) or Kalnins & Miller (1986)
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higher dimensions
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other equations
Moving Frames

interplay Geometry ←→ Algebra
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other equations
Moving Frames

interplay Geometry ←→ Algebra



GENERALISATIONS

non-positive curvature
I R3

I H3: spinors (joint work with Robert Milson)

higher dimensions
non-constant curvature

I CPn, Lie groups, symmetric spaces, . . .
I BGG? (joint work with Andreas Čap & Matthias Hammerl)
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THANKS FOR YOUR ATTENTION!
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