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THE PROBLEM

SEPARATION OF VARIABLES

GENERAL PROBLEM

Classify all coordinate systems in which a given partial differential
equation is solvable by a separation of variables.

here: Hamilton-Jacobi equation
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(M, g) Riemannian manifold

DEFINITION
o K Killing tensor :&

Ksy = Kys V(aKsy) =0




THE PROBLEM

INTEGRABLE KILLING TENSORS

(M, g) Riemannian manifold
DEFINITION
e K Killing tensor &
Ksy = Kys V(aKsy) =0

e Kintegrable &

3 coordinates x, in a neighbourhood of almost every point:
K", 85 = A(x)0,

i.e. coordinate vectors = eigen vectors of K
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VIA INTEGRABLE KILLING TENSORS

THEOREM (STACKEL, EISENHART, BENENTTI)

Every orthogonal coordinate system in which the Hamilton-Jacobi
equation separates is given by

Q an integrable Killing tensor K
@ with pointwise simple eigen values
@ compatible with the potential: d(KdV) =0
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THE PROBLEM

VIA INTEGRABLE KILLING TENSORS

THEOREM (STACKEL, EISENHART, BENENTTI)

Every orthogonal coordinate system in which the Hamilton-Jacobi
equation separates is given by

Q an integrable Killing tensor K
@ with pointwise simple eigen values
@ compatible with the potential: d(KdV) =0

FIRST STEP
Determine integrable Killing tensors.

classical approach:  Moving Frames
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NIJENHUIS INTEGRABILITY

DEFINITION
Nijenhuis torsion:

N(X,Y) = K2[X, Y] - K[KX, Y] — KX, KY] + [KX, KY]

o « 0 « 6
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THEOREM (TONOLO, SCHOUTEN, NIJENHUIS ’51)

OzNé[mga]é (NI)
K integrable < 0= N5[ 8, Ko (NII)

0=Ny K, K5 (NIl




THE PROBLEM

NIJENHUIS INTEGRABILITY

DEFINITION
Nijenhuis torsion:

N(X,Y) = K2[X, Y] - K[KX, Y] — KX, KY] + [KX, KY]

o « 0 o o
N, = K% V1, K + VK, K

THEOREM (TONOLO, SCHOUTEN, NIJENHUIS ’51)

OzNé[nga]é (NI)
K integrable < 0= N‘5[ 8, Ko (NII)
0=N'; Ko K5 (NIl

PRECISE PROBLEM
Solve (NI)—(NIlI) for Killing tensors on S°.
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BENENTI TENSORS

THEOREM (MATVEEV-TOPALOV ’98)

detg
det g’

_2
d~g = K ;:( )”“ g Kiling tensor for g




THE PROBLEM

BENENTI TENSORS

THEOREM (MATVEEV-TOPALOV ’98)

_2
g~g = K= (geett g, ) "4 Killing tensor for g
EXAMPLE
f- 8§ 5 §gn Ae GL(n+1)
X = f(x) =15 f*g~g




THE PROBLEM

BENENTI TENSORS

THEOREM (MATVEEV-TOPALOV ’98)
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g~g = K= <geett g, ) "4 Killing tensor for g
EXAMPLE
f: 8" 5 gn Ae GL(n+1)
X = f(x) =15 f‘g~g
DEFINITION

K Benenti Killing tensor




THE PROBLEM

THEOREM (MATVEEV-TOPALOV ’98)

BENENTI TENSORS

2
g~g = K= (g:tt g, ) "4 Killing tensor for g
EXAMPLE
f: 8§ 5 §n Ae GL(n+1)
X = f(x) =15 f*g~g
DEFINITION

K Benenti Killing tensor

PARTICULAR SOLUTION
Benenti Killing tensors are integrable.
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TRANSLATION

ALGEBRAIC CURVATURE TENSORS

DEFINITION
Ra,b,a0, € (V*)®* algebraic curvature tensoron V&
Q antisymmetry:
Rb,aya,6, = —Raybia,60 = Raybybra,
@ pair symmetry:
Rabsaib; = +Raybyasb,
@ Bianchi identity:

Ra1 byagb, T Ra1 apboby T Ra1b2b1 a — 0




TRANSLATION

ALGEBRAIC CURVATURE TENSORS

DEFINITION
Ra,b,a0, € (V*)®* algebraic curvature tensoron V&
Q@ antisymmetry:

Rb1 ajagby — _Ra1b1 apby — Ra1b1b2a2

@ pair symmetry:
Ragb2a1b1 = +Ra1b132b2
@ Bianchi identity:

Ra1b1a2b2 + Ra1a2b2b1 + Ra1b2b1a2 =0

*

algebraic curvature tensors Ry p, g, = GL(V)-irrep 212
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ALGEBRAIC DESCRIPTION OF KILLING TENSORS

ON CONSTANT CURVATURE MANIFOLDS

S"cV Isom(S") = O(V) ¢ GL(V)



TRANSLATION

ALGEBRAIC DESCRIPTION OF KILLING TENSORS

ON CONSTANT CURVATURE MANIFOLDS

S"cV Isom(S") = O(V) ¢ GL(V)

THEOREM (MCLENAGHAN, MILSON & SMIRNOV ’04)
There is an isomorphism of O(V)-representations

Killing tensors K on S" «+— algebraic curvature tensors R on V

Ke(v,w) = Rap,ab, X3 x%2vP1wb2

xe 8" v,w L x

(and similarly for all constant curvature manifolds).




TRANSLATION

THE KULKARNI-NOMIZU PRODUCT

12

1] ® [1T] TT11e e

DEFINITION
Kulkarni-Nomizu product h ® k of symmetric tensors h;, s, and Kp, p,

(h@ k)31b132b2 = ha132kb1b2 - ha1b2kb132 - hb1 azka1b2 + hb1b2ka132
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AS ALGEBRAIC CURVATURE TENSORS

EXAMPLE
metric algebraic curvature tensor
— 1
9 2909




TRANSLATION

THE METRIC & BENENTI KILLING TENSORS

AS ALGEBRAIC CURVATURE TENSORS

EXAMPLE

metric algebraic curvature tensor
—> ;
9 2909

EXAMPLE

Benenti Killing tensor
Ka

algebraic curvature tensor

1(Ag) o (Ag)
where

Ae GL(V) (Ag)(v,w) := g(Av, Aw)




TRANSLATION

THE METRIC & BENENTI KILLING TENSORS

AS ALGEBRAIC CURVATURE TENSORS

EXAMPLE
metric algebraic curvature tensor
— ;

9 2909

EXAMPLE
Benenti Killing tensor algebraic curvature tensor
—

Ka 3(Ag) © (Ag)

where
Ae GL(V) (Ag)(v,w) := g(Av, Aw)

Benenti Killing tensors = GL(V)-orbit of the metric
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TRANSLATED PROBLEM

ALGEBRAIC INTEGRABILITY CONDITIONS

THEOREM (-)

A Killing tensor on S" is integrable <
the corresponding algebraic curvature tensor R, p, 2,0, Satisfies

(@] ]| * ' '
ﬁ gileb1 axbo Rjd1 cody T 0
|0b]
azlai[by]cy]ar| . _
z gijgk/R’b1 abo R/a1 kc1 Hld1 Codh — 0
|0b|

(and similarly for all constant curvature manifolds).
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TRANSLATED PROBLEM

ADVANTAGES

OF THE ALGEBRAIC APPROACH

@ simple algebraic equations instead of non-linear PDE system
@ third equation redundant!

@ valid for all (pseudo-)Riemannian constant curvature manifolds
@ Riemann tensors are intensively studied.

@ new insight into integrability from

» representation theory
» algebraic geometry
» geometric invariant theory
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HODGE DECOMPOSITION

OF ALGEBRAIC CURVATURE TENSORS

Scv dimV =4
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SOLUTION

HODGE DECOMPOSITION

OF ALGEBRAIC CURVATURE TENSORS

Scv dmV =4
e algebraic curvature tensors as a symmetric 6 x 6 matrix
b
Ra, b, anbs — R™™, b, € ENd(A?V)
e Hodge decomposition
NV =NVaNV

e block decomposition

Wy | T .

w! = w, Wi =w_ trW, =trW_ =0



SOLUTION

INTEGRABLE KILLING TENSORS ON S8

AS AN ALGEBRAIC VARIETY

THEOREM (-)
Q Kintegrable = 3 orthonormal basis of V such that

wq —t;
v Wg—fg O

_ w3—t3
R= Wi+t
0 Wo+1r
W3+1t3




SOLUTION

INTEGRABLE KILLING TENSORS ON S8

AS AN ALGEBRAIC VARIETY

THEOREM (-)
Q Kintegrable = 3 orthonormal basis of V such that

wy—t
Wg—fg O
R= Ws—1ls A1 = Wo — W3

Wi+t
0 Wo+1r
W3+1t3




SOLUTION

INTEGRABLE KILLING TENSORS ON S8

AS AN ALGEBRAIC VARIETY

THEOREM (-)
Q Kintegrable = 3 orthonormal basis of V such that

—t
e ngfg 0
R= Ws—ls Wi+t A1 = Wo — W3
O Wo+1r »
W3+13
@ Kintegrable < detM=trM=0
Ay B3 +b linear determinantal variety

M= |+t Ax —f
—b 4+t As ycp*




SOLUTION

STACKEL SYSTEMS

AND SEPARABLE COORDINATE SYSTEMS

THEOREM (STACKEL)
There is a bijective correspondence

Stéckel systems <+— separable coordinate systems

DEFINITION

A Stackel system is a vector space spanned by n linearly independent
integrable Killing tensors which mutually commute.




THEOREM (STACKEL)

SOLUTION

STACKEL SYSTEMS

AND SEPARABLE COORDINATE SYSTEMS

There is a bijective correspondence

Stackel systems <—

separable coordinate systems

DEFINITION

A Stackel system is a vector space spanned by n linearly independent
integrable Killing tensors which mutually commute.

FAcCT (-)

[K,k} =0

=

by|bolch b

‘ *

42|

R =) —
g’/Rb1aZb2Rd1CQd2 _ 0
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STACKEL SYSTEMS

AS A SUBVARIETY OF A FANO VARIETY

FACT (-)

- by|balch[db] ™ . -
[K,K]:O s [a iRy aoby P gy =0 (%)
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SOLUTION

STACKEL SYSTEMS

AS A SUBVARIETY OF A FANO VARIETY

FACT (=)
. DIAEACA =
[K, K} =0 < [ iRy aoby P gy =0 (%)
|C2]
o Stackel systems = projective lines on vV
e variety of projective linesonV = Fano variety F{(V)

e linear determinantal variety V < full determinantal variety M
o F1(V)C F(M)
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STACKEL SYSTEMS
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SOLUTION

STACKEL SYSTEMS

AS A SUBVARIETY OF A FANO VARIETY

FACT (-)
. DIAEACA =
KKj=0 & g iRy aoby P gy =0 (%)
(%]
o Stackel systems = projective lines on vV
e variety of projective lineson vV = Fano variety F;(V)
e linear determinantal variety V < full determinantal variety M
) F1 (V) C F1 (M)
e F1(M) well understood for 3 x 3 matrices

» same kernel
» same image
> ..

simply check (x) instead of solving (x)
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STACKEL SYSTEMS

ALGEBRAICALLY

FACT (-)
Stéckel systems correspond to projective lines of matrices

Ay —fa b
M= I3 N> —H with trM=detM =0
-b 4 As

annihilating a fixed vector v = (vq, vo, v3).
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SOLUTION

STACKEL SYSTEMS

ALGEBRAICALLY

FACT (-)
Stéckel systems correspond to projective lines of matrices

Ay —fa b
M= I3 N> —H with trM=detM =0
-b 4 As

annihilating a fixed vector v = (vq, vo, v3).

e generically: projective line through

0 —-v3 w VE—VE v VaVy
vi 0 —w and Vive  VE—VZ  —wug
-v vy 0 —V3Wy Vovs V2 — V3

e V = join of projective plane and projected Veronese variety in P*
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EQUIVARIANT DESCRIPTION

This completely solves our problem:

THEOREM (-)

e A generic Stackel system consists of (multiples of)
Benenti-Killing tensors of the form

Adj(T + Ag) © Adj(T + A\g) AER
and a unique trace free Ricci-Killing tensor

Tog




SOLUTION

EQUIVARIANT DESCRIPTION

This completely solves our problem:

THEOREM (-)

e A generic Stackel system consists of (multiples of)
Benenti-Killing tensors of the form

Adi(T + Ag) ® Adj(T + A\g) AeR
and a unique trace free Ricci-Killing tensor
Tog
e A non-generic Stackel system is of the form
MK ©xKy + AoKo @ Ko + A3K3 © *K3

with (M, A2, A3) L AL (1,1,1) forsome i c R3




SOLUTION

SEPARABLE COORDINATES

Jacobi elliptic coordinates
Lamé rotational coordinates

spherical coordinates

o
o
e Lamé subgroup reduction
(*]
e cylindrical coordinates

compare Eisenhart (1934) or Kalnins & Miller (1986)
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GENERALISATIONS

non-positive curvature
» R3
» H3: spinors (joint work with Robert Milson)
higher dimensions
non-constant curvature
» CP", Lie groups, symmetric spaces, . ..
» BGG? (joint work with Andreas Cap & Matthias Hammerl)

other equations
Moving Frames

interplay Geometry <«— Algebra



THANKS FOR YOUR ATTENTION!
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