SEPARABLE COORDINATES ON THE 3-SPHERE

Konrad Schöbel

Friedrich-Schiller-Universität Jena

Workshop on Moving Frames in Geometry

Montreal, 13 - 17 June 2011

OUTLINE

OUTLINE

OUTLINE

OUTLINE

3 TRANSLATED PROBLEM

SEPARATION OF VARIABLES

GENERAL PROBLEM

Classify all coordinate systems in which a given partial differential equation is solvable by a separation of variables.

here: Hamilton-Jacobi equation

$$\frac{1}{2}g^{ij}\frac{\partial W}{\partial x^i}\frac{\partial W}{\partial x^j}+V=E$$

INTEGRABLE KILLING TENSORS

(M,g) Riemannian manifold

DEFINITION

K Killing tensor :⇔

$$K_{\beta\gamma} = K_{\gamma\beta}$$
 $\nabla_{(\alpha}K_{\beta\gamma)} = 0$

K integrable :⇔

 \exists coordinates x_{α} in a neighbourhood of almost every point:

$$K^{eta}_{\ \gamma}\,\partial_{eta}=\lambda(x)\partial_{\gamma}$$

i.e. coordinate vectors = eigen vectors of K

INTEGRABLE KILLING TENSORS

(M,g) Riemannian manifold

DEFINITION

K Killing tensor :⇔

$$K_{\beta\gamma} = K_{\gamma\beta}$$
 $\nabla_{(\alpha}K_{\beta\gamma)} = 0$

K integrable :⇔

 \exists coordinates x_{α} in a neighbourhood of almost every point:

$${\sf K}^eta_\gamma\,\partial_eta=\lambda({\sf x})\partial_\gamma$$

i.e. coordinate vectors = eigen vectors of K

VIA INTEGRABLE KILLING TENSORS

THEOREM (STÄCKEL, EISENHART, BENENTI)

Every orthogonal coordinate system in which the Hamilton-Jacobi equation separates is given by

- an integrable Killing tensor K
- with pointwise simple eigen values
- S compatible with the potential: d(KdV) = 0

FIRST STEP

Determine integrable Killing tensors.

classical approach: Moving Frames

VIA INTEGRABLE KILLING TENSORS

THEOREM (STÄCKEL, EISENHART, BENENTI)

Every orthogonal coordinate system in which the Hamilton-Jacobi equation separates is given by

- an integrable Killing tensor K
- with pointwise simple eigen values
- So compatible with the potential: d(KdV) = 0

FIRST STEP

Determine integrable Killing tensors.

classical approach: Moving Frames

VIA INTEGRABLE KILLING TENSORS

THEOREM (STÄCKEL, EISENHART, BENENTI)

Every orthogonal coordinate system in which the Hamilton-Jacobi equation separates is given by

- an integrable Killing tensor K
- with pointwise simple eigen values
- S compatible with the potential: d(KdV) = 0

FIRST STEP

Determine integrable Killing tensors.

classical approach: Moving Frames

NIJENHUIS INTEGRABILITY

DEFINITION Nijenhuis torsion:

$$egin{aligned} \mathcal{N}(X,Y) &:= \mathcal{K}^2[X,Y] - \mathcal{K}[\mathcal{K}X,Y] - \mathcal{K}[X,\mathcal{K}Y] + [\mathcal{K}X,\mathcal{K}Y] \ &\mathbf{N}^lpha_{\ eta\gamma} &= \mathcal{K}^lpha_{\ \delta}
abla_{[\gamma} \mathcal{K}^\delta_{\ eta]} +
abla_{\delta} \mathcal{K}^lpha_{[\gamma} \mathcal{K}^\delta_{\ eta]} \end{aligned}$$

THEOREM (TONOLO, SCHOUTEN, NIJENHUIS '51)

$$K \text{ integrable } \Leftrightarrow \begin{cases} 0 = N^{\delta}_{[\beta\gamma} g_{\alpha]\delta} & (NI) \\ 0 = N^{\delta}_{[\beta\gamma} K_{\alpha]\delta} & (NII) \\ 0 = N^{\delta}_{[\beta\gamma} K_{\alpha]\varepsilon} K^{\varepsilon}_{\delta} & (NIII) \end{cases}$$

PRECISE PROBLEM

Solve (NI)–(NIII) for Killing tensors on S^3 .

NIJENHUIS INTEGRABILITY

DEFINITION Nijenhuis torsion:

$$\begin{split} \mathcal{N}(X,Y) &:= \mathcal{K}^{2}[X,Y] - \mathcal{K}[\mathcal{K}X,Y] - \mathcal{K}[X,\mathcal{K}Y] + [\mathcal{K}X,\mathcal{K}Y] \\ \mathcal{N}^{\alpha}_{\ \beta\gamma} &= \mathcal{K}^{\alpha}_{\ \delta} \nabla_{[\gamma} \mathcal{K}^{\delta}_{\ \beta]} + \nabla_{\delta} \mathcal{K}^{\alpha}_{\ [\gamma} \mathcal{K}^{\delta}_{\ \beta]} \end{split}$$

THEOREM (TONOLO, SCHOUTEN, NIJENHUIS '51)

$$K \text{ integrable } \Leftrightarrow \begin{cases} 0 = N^{\delta}_{[\beta\gamma} g_{\alpha]\delta} & (NI) \\ 0 = N^{\delta}_{[\beta\gamma} K_{\alpha]\delta} & (NII) \\ 0 = N^{\delta}_{[\beta\gamma} K_{\alpha]\varepsilon} K^{\varepsilon}_{\delta} & (NIII) \end{cases}$$

PRECISE PROBLEM

Solve (NI)–(NIII) for Killing tensors on S^3 .

THEOREM (MATVEEV-TOPALOV '98)

$$g' \sim g \qquad \Rightarrow \qquad \mathcal{K} := \left(rac{\det g}{\det g'}
ight)^{rac{2}{n+1}} g' \quad \textit{Killing tensor for } g$$

Example

$$\begin{array}{rcccc} f: & S^n & \to & S^n & & A \in GL(n+1) \\ & x & \mapsto & f(x) := \frac{Ax}{\|Ax\|} & & & f^*g \sim g \end{array}$$

DEFINITION *K* Benenti Killing tenso

PARTICULAR SOLUTION

THEOREM (MATVEEV-TOPALOV '98)

$$g' \sim g \qquad \Rightarrow \qquad {\mathcal K} := \left(rac{\det g}{\det g'}
ight)^{rac{2}{n+1}} g' \quad {\it Killing \ tensor \ for \ g}$$

EXAMPLE

$$egin{array}{rccccccc} f\colon & S^n & o & S^n & A\in GL(n+1) \ & x & \mapsto & f(x):=rac{Ax}{\|Ax\|} & & f^*g\sim g \end{array}$$

DEFINITION

K Benenti Killing tensor

PARTICULAR SOLUTION

THEOREM (MATVEEV-TOPALOV '98)

$$g' \sim g \qquad \Rightarrow \qquad {\mathcal K} := \left(rac{\det g}{\det g'}
ight)^{rac{2}{n+1}} g' \quad {\it Killing \ tensor \ for \ g}$$

EXAMPLE

$$egin{array}{rcccccc} f\colon & S^n & o & S^n & A\in GL(n+1) \ & x & \mapsto & f(x):=rac{Ax}{\|Ax\|} & & f^*g\sim g \end{array}$$

DEFINITION

K Benenti Killing tensor

PARTICULAR SOLUTION

THEOREM (MATVEEV-TOPALOV '98)

$$g' \sim g \qquad \Rightarrow \qquad {\mathcal K} := \left(rac{\det g}{\det g'}
ight)^{rac{2}{n+1}} g' \quad {\it Killing \ tensor \ for \ g}$$

EXAMPLE

$$egin{array}{rcccccc} f\colon & S^n & o & S^n & A\in GL(n+1) \ & x & \mapsto & f(x):=rac{Ax}{\|Ax\|} & f^*g\sim g \end{array}$$

DEFINITION

K Benenti Killing tensor

PARTICULAR SOLUTION

ALGEBRAIC CURVATURE TENSORS

DEFINITION

 $R_{a_1b_1a_2b_2} \in (V^*)^{\otimes 4}$ algebraic curvature tensor on V : antisymmetry:

$$R_{b_1a_1a_2b_2} = -R_{a_1b_1a_2b_2} = R_{a_1b_1b_2a_2}$$

opair symmetry:

$$R_{a_2b_2a_1b_1} = +R_{a_1b_1a_2b_2}$$

Sianchi identity:

$$R_{a_1b_1a_2b_2} + R_{a_1a_2b_2b_1} + R_{a_1b_2b_1a_2} = 0$$

algebraic curvature tensors $R_{a_1b_1a_2b_2} = GL(V)$ -irrep

ALGEBRAIC CURVATURE TENSORS

DEFINITION

 $R_{a_1b_1a_2b_2} \in (V^*)^{\otimes 4}$ algebraic curvature tensor on V : antisymmetry:

$$R_{b_1a_1a_2b_2} = -R_{a_1b_1a_2b_2} = R_{a_1b_1b_2a_2}$$

pair symmetry:

$$R_{a_2b_2a_1b_1} = +R_{a_1b_1a_2b_2}$$

Bianchi identity:

$$R_{a_1b_1a_2b_2} + R_{a_1a_2b_2b_1} + R_{a_1b_2b_1a_2} = 0$$

algebraic curvature tensors $R_{a_1b_1a_2b_2} = GL(V)$ -irrep

ALGEBRAIC DESCRIPTION OF KILLING TENSORS

ON CONSTANT CURVATURE MANIFOLDS

$$S^n \subset V$$
 $Isom(S^n) = O(V) \subset GL(V)$

THEOREM (MCLENAGHAN, MILSON & SMIRNOV '04) There is an isomorphism of O(V)-representations

Killing tensors K on $S^n \iff$ algebraic curvature tensors R on V

$$K_{X}(v, w) := R_{a_{1}b_{1}a_{2}b_{2}}x^{a_{1}}x^{a_{2}}v^{b_{1}}w^{b_{2}}$$
$$x \in S^{n} \quad v, w \perp x$$

(and similarly for all constant curvature manifolds).

ALGEBRAIC DESCRIPTION OF KILLING TENSORS

ON CONSTANT CURVATURE MANIFOLDS

$$S^n \subset V$$
 $Isom(S^n) = O(V) \subset GL(V)$

THEOREM (MCLENAGHAN, MILSON & SMIRNOV '04)There is an isomorphism of O(V)-representations

Killing tensors K on $S^n \iff$ algebraic curvature tensors R on V

$$egin{aligned} & \mathcal{K}_{x}(v,w) & := & R_{a_{1}b_{1}a_{2}b_{2}}x^{a_{1}}x^{a_{2}}v^{b_{1}}w^{b_{2}} \ & x \in S^{n} & v,w \perp x \end{aligned}$$

(and similarly for all constant curvature manifolds).

THE KULKARNI-NOMIZU PRODUCT

DEFINITION

Kulkarni-Nomizu product $h \otimes k$ of symmetric tensors $h_{a_1a_2}$ and $k_{b_1b_2}$

$$(h \otimes k)_{a_1b_1a_2b_2} = h_{a_1a_2}k_{b_1b_2} - h_{a_1b_2}k_{b_1a_2} - h_{b_1a_2}k_{a_1b_2} + h_{b_1b_2}k_{a_1a_2}$$

THE METRIC & BENENTI KILLING TENSORS

AS ALGEBRAIC CURVATURE TENSORS

THE METRIC & BENENTI KILLING TENSORS

AS ALGEBRAIC CURVATURE TENSORS

Benenti Killing tensors = GL(V)-orbit of the metric

THE METRIC & BENENTI KILLING TENSORS

AS ALGEBRAIC CURVATURE TENSORS

Benenti Killing tensors = GL(V)-orbit of the metric

TRANSLATED PROBLEM

OUTLINE

1 THE PROBLEM

2 TRANSLATION

3 TRANSLATED PROBLEM

4 SOLUTION

ALGEBRAIC INTEGRABILITY CONDITIONS

Theorem (-)

A Killing tensor on S^n is integrable \Leftrightarrow the corresponding algebraic curvature tensor $R_{a_1b_1a_2b_2}$ satisfies

$$\left[egin{array}{c} rac{a_2 b_1 |d_1|^{\star}}{b_2} & g_{ij} R^i_{\ b_1 a_2 b_2} R^j_{\ d_1 c_2 d_2} = 0 \ rac{a_2 |a_1| b_1 |c_1| d_1|^{\star}}{b_2} & g_{ij} g_{kl} R^i_{\ b_1 a_2 b_2} R^j_{\ a_1 \ c_1} R^l_{\ d_1 c_2 d_2} = 0 \ rac{a_2 |a_1| b_1 |c_1| d_1|^{\star}}{b_2} & g_{ij} g_{kl} R^j_{\ b_1 a_2 b_2} R^j_{\ a_1 \ c_1} R^l_{\ d_1 c_2 d_2} = 0 \ rac{a_2 |a_1| b_1 |c_1| d_1}{b_2} & R^j_{\ a_1 \ c_2 \ c_2} R^j_{\ a_1 \ c_2 \ c_2} = 0 \ rac{a_2 |a_1| b_1 |c_1| d_1}{b_2} & R^j_{\ a_1 \ c_2 \ c_2} = 0 \ R^j_{\ a_1 \ c_2 \ c_2} = 0 \ R^j_{\ a_1 \ c_2 \$$

(and similarly for all constant curvature manifolds).

OF THE ALGEBRAIC APPROACH

simple algebraic equations instead of non-linear PDE system

- third equation redundant!
- valid for all (pseudo-)Riemannian constant curvature manifolds
- Riemann tensors are intensively studied.
- new insight into integrability from
 - representation theory
 - algebraic geometry
 - geometric invariant theory

OF THE ALGEBRAIC APPROACH

simple algebraic equations instead of non-linear PDE system

third equation redundant!

valid for all (pseudo-)Riemannian constant curvature manifolds

- Riemann tensors are intensively studied.
- new insight into integrability from
 - representation theory
 - algebraic geometry
 - geometric invariant theory

OF THE ALGEBRAIC APPROACH

- simple algebraic equations instead of non-linear PDE system
- third equation redundant!
- valid for all (pseudo-)Riemannian constant curvature manifolds
- Riemann tensors are intensively studied.
- new insight into integrability from
 - representation theory
 - algebraic geometry
 - geometric invariant theory

OF THE ALGEBRAIC APPROACH

- simple algebraic equations instead of non-linear PDE system
- third equation redundant!
- valid for all (pseudo-)Riemannian constant curvature manifolds
- Itemann tensors are intensively studied.
- new insight into integrability from
 - representation theory
 - algebraic geometry
 - geometric invariant theory

OF THE ALGEBRAIC APPROACH

- simple algebraic equations instead of non-linear PDE system
- third equation redundant!
- valid for all (pseudo-)Riemannian constant curvature manifolds
- Riemann tensors are intensively studied.
- new insight into integrability from
 - representation theory
 - algebraic geometry
 - geometric invariant theory

OUTLINE

1 THE PROBLEM

2 TRANSLATION

3 TRANSLATED PROBLEM

HODGE DECOMPOSITION

OF ALGEBRAIC CURVATURE TENSORS

$S^3 \subset V$ dim V = 4

algebraic curvature tensors as a symmetric 6 × 6 matrix

$$R_{a_1b_1a_2b_2} \quad \longleftrightarrow \quad R^{a_1b_1}_{a_2b_2} \in \mathsf{End}(\Lambda^2 V)$$

Hodge decomposition

$$\Lambda^2 V = \Lambda^2_+ V \oplus \Lambda^2_- V$$

block decomposition

$$R = \left(\begin{array}{c|c} W_+ & T \\ \hline T^t & W_- \end{array}\right) + \frac{s}{12}I$$

HODGE DECOMPOSITION

OF ALGEBRAIC CURVATURE TENSORS

 $S^3 \subset V$ dim V = 4

 algebraic curvature tensors as a symmetric 6 × 6 matrix
 R_{a1b1a2b2} ↔ R^{a1b1}_{a2b2} ∈ End(Λ²V)

 Hodge decomposition

 $\Lambda^2 V = \Lambda^2_+ V \oplus \Lambda^2_- V$

block decomposition

$$R = \left(\begin{array}{c|c} W_+ & T \\ \hline T^t & W_- \end{array}\right) + \frac{s}{12}I$$

HODGE DECOMPOSITION

OF ALGEBRAIC CURVATURE TENSORS

$$S^3 \subset V$$
 dim $V = 4$

• algebraic curvature tensors as a symmetric 6×6 matrix

$$R_{a_1b_1a_2b_2} \qquad \longleftrightarrow \qquad R^{a_1b_1}_{a_2b_2} \in \operatorname{End}(\Lambda^2 V)$$

Hodge decomposition

$$\Lambda^2 V = \Lambda^2_+ V \oplus \Lambda^2_- V$$

block decomposition

$$R = \left(\begin{array}{c|c} W_+ & T \\ \hline T^t & W_- \end{array}\right) + \frac{s}{12}I$$

HODGE DECOMPOSITION

OF ALGEBRAIC CURVATURE TENSORS

$$S^3 \subset V$$
 dim $V = 4$

• algebraic curvature tensors as a symmetric 6×6 matrix

$$R_{a_1b_1a_2b_2} \quad \longleftrightarrow \quad R^{a_1b_1}_{a_2b_2} \in \operatorname{End}(\Lambda^2 V)$$

Hodge decomposition

$$\Lambda^2 V = \Lambda^2_+ V \oplus \Lambda^2_- V$$

block decomposition

$$R = \left(\frac{W_+ \mid T}{T^t \mid W_-}\right) + \frac{s}{12}I$$

Integrable Killing tensors on S^3

AS AN ALGEBRAIC VARIETY

Theorem (-)

• K integrable $\Rightarrow \exists$ orthonormal basis of V such that

$$R = \begin{pmatrix} {}^{w_1 - t_1} & w_2 - t_2 & \mathbf{0} \\ & & w_3 - t_3 & & \\ & \mathbf{0} & & w_1 + t_1 & \\ & & \mathbf{0} & & w_2 + t_2 & \\ & & & w_3 + t_3 \end{pmatrix}$$

• K integrable \Leftrightarrow det M = tr M = 0

$$M = \begin{pmatrix} \Delta_1 & -t_3 & +t_2 \\ +t_3 & \Delta_2 & -t_1 \\ -t_2 & +t_1 & \Delta_3 \end{pmatrix}$$

linear determinantal variety

 $\mathcal{V}\subset\mathbb{P}^4$

Integrable Killing tensors on S^3

AS AN ALGEBRAIC VARIETY

W₃

Theorem (-)

• K integrable $\Rightarrow \exists$ orthonormal basis of V such that

$$R = \begin{pmatrix} w_1 - t_1 & & & \mathbf{0} \\ & w_2 - t_2 & & & \mathbf{0} \\ & & w_3 - t_3 & & \\ & & \mathbf{0} & & w_1 + t_1 & \\ & & & \mathbf{0} & & w_2 + t_2 \\ & & & & \mathbf{w}_3 + t_3 \end{pmatrix} \qquad \Delta_1 := w_2 - w_2 - w_3 -$$

• K integrable \Leftrightarrow det M = tr M = 0

$$M = \begin{pmatrix} \Delta_1 & -t_3 & +t_2 \\ +t_3 & \Delta_2 & -t_1 \\ -t_2 & +t_1 & \Delta_3 \end{pmatrix}$$

linear determinantal variety

 $\mathcal{V}\subset\mathbb{P}^4$

INTEGRABLE KILLING TENSORS ON S^3

₽4

AS AN ALGEBRAIC VARIETY

THEOREM (-)

• K integrable $\Rightarrow \exists$ orthonormal basis of V such that

$$R = \begin{pmatrix} w_1 - t_1 & w_2 - t_2 & \mathbf{0} \\ & w_3 - t_3 & \\ & \mathbf{0} & & w_1 + t_1 \\ & \mathbf{0} & & & w_2 + t_2 \\ & & & & w_3 + t_3 \end{pmatrix} \qquad \Delta_1 := w_2 - w_3$$

2 *K* integrable \Leftrightarrow det M = tr M = 0

$$M = egin{pmatrix} \Delta_1 & -t_3 & +t_2 \ +t_3 & \Delta_2 & -t_1 \ -t_2 & +t_1 & \Delta_3 \end{pmatrix}$$
 linear determinantal variety $\mathcal{V} \subset \mathbb{P}^4$

AND SEPARABLE COORDINATE SYSTEMS

THEOREM (STÄCKEL)

There is a bijective correspondence

Stäckel systems \iff separable coordinate systems

DEFINITION

A Stäckel system is a vector space spanned by *n* linearly independent integrable Killing tensors which *mutually commute*.

Fact (-)

AND SEPARABLE COORDINATE SYSTEMS

THEOREM (STÄCKEL)

There is a bijective correspondence

Stäckel systems \iff separable coordinate systems

DEFINITION

A Stäckel system is a vector space spanned by *n* linearly independent integrable Killing tensors which *mutually commute*.

FACT (-)

$$\left[\mathcal{K}, \tilde{\mathcal{K}}
ight] = 0 \qquad \Leftrightarrow \qquad \left[egin{subarray}{c} b_1 | b_2 | d_1 | d_2 \ a_2 \ c_2 \end{array}
ight]^{\star} g_{ij} \mathcal{R}^i_{\ b_1 a_2 b_2} \, \tilde{\mathcal{R}}^j_{\ d_1 c_2 d_2} = 0$$

AS A SUBVARIETY OF A FANO VARIETY

FACT (-) $\begin{bmatrix} \mathcal{K}, \tilde{\mathcal{K}} \end{bmatrix} = 0 \qquad \Leftrightarrow \qquad \begin{bmatrix} b_1 | b_2 | d_1 | d_2 \end{bmatrix}^* g_{ij} \mathcal{R}^i_{b_1 a_2 b_2} \tilde{\mathcal{R}}^j_{d_1 c_2 d_2} = 0 \qquad (*)$

- Stäckel systems = projective lines on V
- variety of projective lines on $\mathcal{V} = -$ Fano variety $F_1(\mathcal{V})$
- linear determinantal variety V << full determinantal variety M
- $F(\mathcal{V}) \subset F(\mathcal{M})$
- F₁(M) well understood for 3 × 3 matrices
 - ⊳ same kernel
 - ⊳ same image
- simply check (*) instead of solving (*)

AS A SUBVARIETY OF A FANO VARIETY

Fact (-)

$$\begin{bmatrix} \mathcal{K}, \tilde{\mathcal{K}} \end{bmatrix} = \mathbf{0} \qquad \Leftrightarrow \qquad \begin{bmatrix} \underline{b_1 | b_2 | d_1 | d_2} \\ \underline{a_2} \\ \underline{c_2} \end{bmatrix}^* g_{ij} R^i_{\ b_1 a_2 b_2} \tilde{R}^j_{\ d_1 c_2 d_2} = \mathbf{0} \qquad (*)$$

• Stäckel systems = projective lines on \mathcal{V}

- variety of projective lines on $\mathcal{V} = Fano$ variety $F_1(\mathcal{V})$
- ullet linear determinantal variety $\mathcal{V}\ \subset\$ full determinantal variety \mathcal{M}

• $F_1(\mathcal{V}) \subset F_1(\mathcal{M})$

- *F*₁(*M*) well understood for 3 × 3 matrices
 - same kernel
 - same image
 - ▶ ...
- simply check (*) instead of solving (*)

AS A SUBVARIETY OF A FANO VARIETY

Fact (-)

$$\begin{bmatrix} \mathcal{K}, \tilde{\mathcal{K}} \end{bmatrix} = \mathbf{0} \qquad \Leftrightarrow \qquad \frac{\frac{b_1 |b_2| d_1 |d_2}{a_2}}{\frac{a_2}{c_2}} g_{ij} \mathcal{R}^{i}_{b_1 a_2 b_2} \tilde{\mathcal{R}}^{j}_{d_1 c_2 d_2} = \mathbf{0} \qquad (*)$$

- Stäckel systems = projective lines on \mathcal{V}
- variety of projective lines on \mathcal{V} = Fano variety $F_1(\mathcal{V})$
- ullet linear determinantal variety $\mathcal{V}\ \subset\$ full determinantal variety \mathcal{M}
- $F_1(\mathcal{V}) \subset F_1(\mathcal{M})$
- *F*₁(*M*) well understood for 3 × 3 matrices
 - same kernel
 - same image
 - ► ...
- simply check (*) instead of solving (*)

AS A SUBVARIETY OF A FANO VARIETY

Fact (-)

$$\begin{bmatrix} \mathcal{K}, \tilde{\mathcal{K}} \end{bmatrix} = \mathbf{0} \qquad \Leftrightarrow \qquad \frac{b_1 |b_2| d_1 |d_2|^*}{a_2} g_{ij} \mathcal{R}^{i}_{b_1 a_2 b_2} \tilde{\mathcal{R}}^{j}_{d_1 c_2 d_2} = \mathbf{0} \qquad (*)$$

- Stäckel systems = projective lines on \mathcal{V}
- variety of projective lines on \mathcal{V} = Fano variety $F_1(\mathcal{V})$
- $\bullet\,$ linear determinantal variety $\mathcal{V}\,\,\subset\,\,$ full determinantal variety $\mathcal{M}\,$

• $F_1(\mathcal{V}) \subset F_1(\mathcal{M})$

- *F*₁(*M*) well understood for 3 × 3 matrices
 - same kernel
 - same image
 - ▶ ...
- simply check (*) instead of solving (*)

AS A SUBVARIETY OF A FANO VARIETY

Fact (-)

$$\begin{bmatrix} \mathcal{K}, \tilde{\mathcal{K}} \end{bmatrix} = \mathbf{0} \qquad \Leftrightarrow \qquad \frac{\frac{b_1 | b_2 | d_1 | d_2}{a_2}}{\frac{a_2}{c_2}} g_{ij} \mathcal{R}^{i}_{b_1 a_2 b_2} \tilde{\mathcal{R}}^{j}_{d_1 c_2 d_2} = \mathbf{0} \qquad (*)$$

- Stäckel systems = projective lines on \mathcal{V}
- variety of projective lines on \mathcal{V} = Fano variety $F_1(\mathcal{V})$
- $\bullet\,$ linear determinantal variety $\mathcal{V}\,\,\subset\,\,$ full determinantal variety $\mathcal{M}\,$

• $F_1(\mathcal{V}) \subset F_1(\mathcal{M})$

- *F*₁(*M*) well understood for 3 × 3 matrices
 - same kernel
 - same image
 - ▶ ...
- simply check (*) instead of solving (*)

AS A SUBVARIETY OF A FANO VARIETY

Fact (-)

$$\begin{bmatrix} \mathcal{K}, \tilde{\mathcal{K}} \end{bmatrix} = \mathbf{0} \qquad \Leftrightarrow \qquad \frac{\frac{b_1 |b_2| d_1 |d_2|^*}{a_2}}{\frac{a_2}{c_2}} g_{ij} \mathcal{R}^{i}_{b_1 a_2 b_2} \tilde{\mathcal{R}}^{j}_{d_1 c_2 d_2} = \mathbf{0} \qquad (*)$$

- Stäckel systems = projective lines on \mathcal{V}
- variety of projective lines on $\mathcal{V} = Fano$ variety $F_1(\mathcal{V})$
- $\bullet\,$ linear determinantal variety $\mathcal{V}\,\,\subset\,\,$ full determinantal variety $\mathcal{M}\,$
- $F_1(\mathcal{V}) \subset F_1(\mathcal{M})$
- $F_1(\mathcal{M})$ well understood for 3×3 matrices
 - same kernel
 - same image
 - ▶ ...
- simply check (*) instead of solving (*)

AS A SUBVARIETY OF A FANO VARIETY

Fact (-)

$$\begin{bmatrix} \mathcal{K}, \tilde{\mathcal{K}} \end{bmatrix} = \mathbf{0} \qquad \Leftrightarrow \qquad \frac{\frac{b_1 |b_2| d_1 |d_2|^*}{a_2}}{\frac{a_2}{c_2}} g_{ij} \mathcal{R}^{i}_{b_1 a_2 b_2} \tilde{\mathcal{R}}^{j}_{d_1 c_2 d_2} = \mathbf{0} \qquad (*)$$

- Stäckel systems = projective lines on \mathcal{V}
- variety of projective lines on $\mathcal{V} = Fano$ variety $F_1(\mathcal{V})$
- linear determinantal variety $\mathcal{V}\ \subset\$ full determinantal variety \mathcal{M}
- $F_1(\mathcal{V}) \subset F_1(\mathcal{M})$
- $F_1(\mathcal{M})$ well understood for 3×3 matrices
 - same kernel
 - same image
 - ▶ ...
- simply check (*) instead of solving (*)

STÄCKEL SYSTEMS ALGEBRAICALLY

Fact (-)

Stäckel systems correspond to projective lines of matrices

$$M = \begin{pmatrix} \Delta_1 & -t_3 & t_2 \\ t_3 & \Delta_2 & -t_1 \\ -t_2 & t_1 & \Delta_3 \end{pmatrix} \qquad \text{with} \quad \text{tr } M = \det M = 0$$

annihilating a fixed vector $v = (v_1, v_2, v_3)$.

generically: projective line through

 $\begin{pmatrix} 0 & -v_3 & v_2 \\ v_3 & 0 & -v_1 \\ -v_2 & v_1 & 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} v_2^2 - v_3^2 & -v_1v_2 & v_3v_1 \\ v_1v_2 & v_3^2 - v_1^2 & -v_2v_3 \\ -v_3v_1 & v_2v_3 & v_1^2 - v_2^2 \end{pmatrix}$

 ${}^{\circ}$ ${\cal V}=$ join of projective plane and projected Veronese variety in ${\mathbb P}^4$

Fact (-)

Stäckel systems correspond to projective lines of matrices

$$M = \begin{pmatrix} \Delta_1 & -t_3 & t_2 \\ t_3 & \Delta_2 & -t_1 \\ -t_2 & t_1 & \Delta_3 \end{pmatrix} \qquad \text{with} \quad \text{tr } M = \det M = 0$$

annihilating a fixed vector $v = (v_1, v_2, v_3)$.

• generically: projective line through

$$\begin{pmatrix} 0 & -v_3 & v_2 \\ v_3 & 0 & -v_1 \\ -v_2 & v_1 & 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} v_2^2 - v_3^2 & -v_1 v_2 & v_3 v_1 \\ v_1 v_2 & v_3^2 - v_1^2 & -v_2 v_3 \\ -v_3 v_1 & v_2 v_3 & v_1^2 - v_2^2 \end{pmatrix}$$

• $\mathcal{V} =$ join of projective plane and projected Veronese variety in \mathbb{P}^4

Fact (-)

Stäckel systems correspond to projective lines of matrices

$$M = \begin{pmatrix} \Delta_1 & -t_3 & t_2 \\ t_3 & \Delta_2 & -t_1 \\ -t_2 & t_1 & \Delta_3 \end{pmatrix} \qquad \text{with} \quad \text{tr } M = \det M = 0$$

annihilating a fixed vector $v = (v_1, v_2, v_3)$.

• generically: projective line through

$$\begin{pmatrix} 0 & -v_3 & v_2 \\ v_3 & 0 & -v_1 \\ -v_2 & v_1 & 0 \end{pmatrix} \quad \text{and} \quad \begin{pmatrix} v_2^2 - v_3^2 & -v_1 v_2 & v_3 v_1 \\ v_1 v_2 & v_3^2 - v_1^2 & -v_2 v_3 \\ -v_3 v_1 & v_2 v_3 & v_1^2 - v_2^2 \end{pmatrix}$$

• $\mathcal{V} = \text{join of projective plane and projected Veronese variety in } \mathbb{P}^4$

EQUIVARIANT DESCRIPTION

 $\lambda \in \mathbb{R}$

This completely solves our problem:

THEOREM (-) A generic Stäckel system consists of (multiples of) Benenti-Killing tensors of the form $\operatorname{Adj}(T + \lambda g) \otimes \operatorname{Adj}(T + \lambda g)$ and a unique trace free Ricci-Killing tensor $T \otimes g$

 $\lambda_1 K_1 \odot * K_1 + \lambda_2 K_2 \odot * K_2 + \lambda_3 K_3 \odot * K_3$

with $(\lambda_1, \lambda_2, \lambda_3) \perp \vec{n} \perp (1, 1, 1)$ for some $\vec{n} \in \mathbb{R}^3$

EQUIVARIANT DESCRIPTION

This completely solves our problem:

THEOREM (–)

A generic Stäckel system consists of (multiples of)
 Benenti-Killing tensors of the form

 $\mathsf{Adj}(\mathcal{T} + \lambda g) \otimes \mathsf{Adj}(\mathcal{T} + \lambda g) \qquad \lambda \in \mathbb{R}$

and a unique trace free Ricci-Killing tensor

 $T \otimes g$

A non-generic Stäckel system is of the form

 $\lambda_1 K_1 \odot * K_1 + \lambda_2 K_2 \odot * K_2 + \lambda_3 K_3 \odot * K_3$

with $(\lambda_1, \lambda_2, \lambda_3) \perp \vec{n} \perp (1, 1, 1)$ for some $\vec{n} \in \mathbb{R}^3$

SEPARABLE COORDINATES

- Jacobi elliptic coordinates
- Lamé rotational coordinates
- Lamé subgroup reduction
- spherical coordinates
- cylindrical coordinates

compare Eisenhart (1934) or Kalnins & Miller (1986)

non-positive curvature

- ► ℝ³
- ▶ Ⅲ³: spinors (joint work with Robert Milson)
- higher dimensions
- non-constant curvature
 - ▶ ℂPⁿ, Lie groups, symmetric spaces, ...
 - BGG? (joint work with Andreas Cap & Matthias Hammed)
- other equations
- Moving Frames

• non-positive curvature

- ► ℝ³
- ► Ⅲ³: spinors (joint work with Robert Milson)
- higher dimensions
- non-constant curvature
 - ▶ ℂ*Pⁿ*, Lie groups, symmetric spaces, ...
 - BGG? (joint work with Andreas Cap & Matthias Hammeri)
- other equations
- Moving Frames

• non-positive curvature

- ► ℝ³
- ▶ Ⅲ³: spinors (joint work with Robert Milson)
- higher dimensions
- non-constant curvature
 - $\mathbb{C}P^n$, Lie groups, symmetric spaces, . .
 - BGG? (joint work with Andreas Čap & Matthias Hammerl)
- other equations
- Moving Frames

non-positive curvature

- ► ℝ³
- ▶ Ⅲ³: spinors (joint work with Robert Milson)
- higher dimensions
- non-constant curvature
 - $\mathbb{C}P^n$, Lie groups, symmetric spaces, ...
 - BGG? (joint work with Andreas Čap & Matthias Hammerl)
- other equations
- Moving Frames

non-positive curvature

- ► ℝ³
- ▶ Ⅲ³: spinors (joint work with Robert Milson)
- higher dimensions
- non-constant curvature
 - ▶ ℂPⁿ, Lie groups, symmetric spaces, ...
 - BGG? (joint work with Andreas Čap & Matthias Hammerl)
- other equations
- Moving Frames

non-positive curvature

- ► ℝ³
- ► Ⅲ³: spinors (joint work with Robert Milson)
- higher dimensions
- non-constant curvature
 - ▶ ℂ*Pⁿ*, Lie groups, symmetric spaces, ...
 - BGG? (joint work with Andreas Čap & Matthias Hammerl)
- other equations
- Moving Frames

- non-positive curvature
 - ► ℝ³
 - ▶ Ⅲ³: spinors (joint work with Robert Milson)
- higher dimensions
- non-constant curvature
 - ▶ ℂ*Pⁿ*, Lie groups, symmetric spaces, ...
 - BGG? (joint work with Andreas Čap & Matthias Hammerl)
- other equations
- Moving Frames

- non-positive curvature
 - ► ℝ³
 - ▶ Ⅲ³: spinors (joint work with Robert Milson)
- higher dimensions
- non-constant curvature
 - ▶ ℂ*Pⁿ*, Lie groups, symmetric spaces, ...
 - BGG? (joint work with Andreas Čap & Matthias Hammerl)
- other equations
- Moving Frames

- non-positive curvature
 - ► ℝ³
 - ▶ Ⅲ³: spinors (joint work with Robert Milson)
- higher dimensions
- non-constant curvature
 - ▶ ℂ*Pⁿ*, Lie groups, symmetric spaces, ...
 - BGG? (joint work with Andreas Čap & Matthias Hammerl)
- other equations
- Moving Frames

THANKS FOR YOUR ATTENTION!

BIBLIOGRAPHY

R. G. McLenaghan, R. Milson & R. G. Smirnov: "Killing tensors as irrepresentations of the general linear group" CRAS Paris, 2004 (339) 621–624

K. Schöbel

"Algebraic Integrability Conditions for Killing Tensors on Constant Sectional Curvature Manifolds" http://lanl.arxiv.org/abs/1004.2872

K. Schöbel

"Separable Coordinates on the 3-Sphere" in preparation