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Projective structure
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M, connected, smooth n-manifold, n ≥ 2. ∇ affine connection with
T∇ = 0.

∇1,∇2 are said to be projectively equivalent if they have the same
geodesics, considered as unparametrised curves. An equivalence
class [∇] is called a projective structure.

Projectively equivalent connections induce the same parallel
transport on the projectivised tangent bundle
P(TM) = (TM \ {0M})/R

∗

Theorem (Weyl, 1921). ∇1,∇2 are projectively equivalent iff there

exists a 1-form β such that

∇1
X
Y − ∇2

X
Y = β(X)Y + β(Y)X.

(Mn, [∇]) is called projectively flat if locally the geodesics can be

mapped to straight lines in Rn.



Weyl projective curvature
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Theorem (Thomas, 1925). For a projective structure [∇], the
functions (defined w.r.t coordinates)
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are projectively invariant and locally fully describe [∇].

Theorem (Weyl, 1921). A projective n-manifold (M, [∇]), n ≥ 3, is
projectively flat iff the Weyl projective curvature tensor
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vanishes. For n = 2, W
jk
= 0, but there are other obstructions to

flatness.
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Problem (R. Liouville, 1889). Given (M2, [∇]) does there exist a

Riemannian metric g with Dg ∼ ∇?

Theorem (R. Liouville 1889). Dg ∼ ∇ iff

d[∇]
�

g⊗ detg−2/3
�

= 0

where d[∇] is a linear first order differential operator which is

projectively invariant.

Example DgE + gE ⊗ β
# with β = −yd+ dy is not projectively

equivalent to a Levi-Civita connection.

Bryant, Dunajski & Eastwood solve Riemannian metrisability problem

for real analytic projective surfaces in 2009.



Related problems
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Theorem (Alvarez-Paiva & Berck, 2010, Bryant). Locally every

surface path geometry is Finsler metrisable.

An affine torsion-free connection preserving a conformal structure is

called a Weyl connection.

Theorem (Weyl, 1918). ∇ preserves [g] iff ∃ a 1-form β such that

∇g = 2β⊗ g. (1)

Given (g, β), Dg,β : (X, Y) 7→ D
g

XY + g(X, Y)β# − β(X)Y − β(Y)X is the

unique connection solving (1).

(e2ƒg, β+ dƒ ) induces the same Weyl connection. Equivalence class

[g, β] is called a Weyl structure.

[g, β] is called compatible with [∇] if Dg,β ∼ ∇.

Problem. Given (M2, [∇]), does there exist a Weyl structure

compatible with [∇]? (β exact↔ Riem. metrisability problem)
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Theorem (Cartan, 1921). Given (M2, [∇]), there exists a

SL(3,R) ⊃ H-bundle π : B→ M and θ ∈ Ω1(B, sl(3,R)) such that

(i) θb : TbB→ sl(3,R) is an isomorphism and R∗
h
θ = h−1θh.

(ii) θ(X) =  for every fundamental vector field of π : B→ M.

(iii) Writing θ = (θ
k
),k=0..2, the leaves of the foliation given by

�

R
¦

θ2
0
, θ2

1

©�⊥
project to geodesics on M.

(iv) For ω ∈ Ω2(M) with ω > 0, π∗ω = ƒθ1
0
∧ θ2

0
for ƒ ∈ C∞(B,R+).

(v) The curvature 2-form Θ = dθ+ θ∧ θ satisfies

Θ =







0 L1 θ
1
0
∧ θ2

0
L2 θ

1
0
∧ θ2

0
0 0 0

0 0 0







for some smooth functions L : B→ R.

Curvature
�

L1θ
1
0
+ L2θ

2
0

�

⊗
�

θ1
0
∧ θ2

0

�

= − ⋆ dK ⊗ dA for ∇ ∼ Dg.



7 17

B consists of the 2-jets of local diffeomorphisms φ : Bϵ0→ M which

are adapted to the orientation and projective structure on M.

φ′
0
: T0R

2 → Tφ(0)M is orientation preserving and  = φ−1 ◦ γ has

vanishing curvature at 0 ∈ R2 for every [∇]-geodesic γ with

γ(0) = φ(0).

H is the Lie group of 2-jets of linear fractional transformations of the

form

ƒ,b :  7→
 · 

1+ b · 
,  ∈ GL+(2,R), bt ∈ R.

H̃ =

(

h,b =

�

det−1 b

0 

�

�

�

�

�

�

 ∈ GL+(2,R), bt ∈ R2

)

h,b 7→ j2
0

�

ƒ̃,b̃
�

where ̃ = det, b̃ = bdet identifies H with

H̃ ⊂ SL(3,R) ≃ PL(2,R).



Coordinate section
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Orientation preserving coordinates  : U→ R2 induce a coordinate

section sending p ∈ U to the 2-jet j2
0
φ defined by

φ(0) = p, ∂k( ◦ φ)
(0) = δ

k
, ∂k∂( ◦ φ)

(0) = −
k
(p).

Coordinate sections satisfy

σ∗

θ =







0 ζ1d
1 + ζ2d

2 ζ2d
1 + ζ3d

2

d1 −κ1d
1 − κ2d

2 −κ2d
1 − κ3d

2

d2 κ0d
1 + κ1d

2 κ1d
1 + κ2d

2





 ,

with

κ0 = 
2
11
, κ1 = 

2
12
, κ2 = 

2
22
, κ3 = −

1
22
.

Integral manifolds of the EDS

¬

θ0
0
,dθ1

0
,dθ2

0

¶

, Θ = θ1
0
∧ θ2

0
.

Conversely integral manifolds locally give coordinate sections.



Weyl metrisability
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Lemma. Suppose (M2, [∇]) admits a compatible Weyl structure

[g, β], then in a neighbourhood Up of every point p ∈ M there exists a

coordinate section σ : Up → B which is an integral manifold of

I
′ =
¬

θ0
0
,dθ1

0
,dθ2

0
, θ1

0
∧ (3θ2

1
+ θ1

2
), θ2

0
∧ (θ2

1
+ 3θ1

2
)
¶

, Θ = θ1
0
∧ θ2

0
.

Conversely every coordinate section σ : U ⊂ M→ B which is an

integral manifold of (I′,Ω) gives rise to a Weyl structure [g, β] on U

which is compatible with [∇].

“Proof”. Locally Weyl metrisability is equivalent to finding

coordinates  so that

κ0 = 3κ2, 3κ1 = κ3.

Weyl structure is given by [∗gE,−κ3d
1 + κ0d

2].

The coordinates  are isothermal for [g].



Linear Pfaffian system
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Consider A = B× R4 with ( coordinates on R4)

φ1 = θ1
1
+ 1θ

1
0
+ 2θ

2
0
,

φ2 = θ2
2
− 1θ

1
0
− 2θ

2
0
,

φ3 = θ1
2
+ 2θ

1
0
+ 31θ

2
0
,

φ4 = θ2
1
− 32θ

1
0
− 1θ

2
0
.

Integral manifolds of the linear Pfaffian system

I =
¬

φ1, φ2, φ3, φ4
¶

,Θ = θ1
0
∧ θ2

0

correspond to the integral manifolds of (I′,Θ).

(I,Θ) is Frobenius, determined and elliptic.

Elliptic PDE theory yields local existence of solutions in the smooth

category.



Conformal structure
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Think of a conformal structure as a G-structure where G is the Lie

group

CO(n) =
¦

 ∈ GL(n,R) |t = λn, λ ∈ R
+
©

.

For n = 2 we have GL(1,C) ≃ CO+(2) = CO(2) ∩GL+(2,R).

A conformal structure [g] on the oriented surface M is a section of

the bundle ρ : C(M)→ M where

C(M) = F
+/GL(1,C)

and F+ is the total space of bundle of positively oriented frames.
C(M) ≃ J +(M), the bundle of orientation compatible “twistors” whose

fibre at p ∈ M is

J
+(M)p =
¦

j ∈ At(TpM) | j
2 = −dTpM, ω(, j()) ≥ 0 for ω > 0

©

.



Complex structure on J (M2)
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Theorem (Dubois-Violette ’83, O’Brian & Rawnsley ’85). An affine

torsion-free connection ∇ on TM2n induces an almost complex

structure J on J (M) which is integrable if and only if the Weyl

projective curvature tensor of ∇ vanishes.

Observation J does only depend on [∇].

If M is oriented, the subbundle κ : J +(M)→ M of orientation

compatible twistors inherits an almost complex structure as well.

For n = 1 we have

W[∇] = 0,

thus for an oriented projective surface (M, [∇]) the manifold C(M) is a

complex surface.



Weyl metrisability problem
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Theorem (M–). A conformal structure [g] on an oriented projective

surface (M, [∇]) underlies a [∇]-compatible Weyl structure [g, β] if

and only if [g] : M→ C(M) is a holomorphic curve.

[g] : M→ C(M) is a holomorphic curve if

(J ◦ [g]′)(TpM) = [g]
′(TpM), ∀ p ∈ M,

where J : TC(M)→ TC(M) is the complex structure map of C(M).

Corollary (M–). Every projective surface locally admits a compatible

Weyl structure.

Example. (M, [∇]) = (S2, [Dg0])

C(S2) ≃ CP
2 \ RP2.

Base-point projection is given by ρ0 : [z] 7→ [Re(z)× m(z)].



The flat case
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Corollary (M–). The Weyl structures on the 2-sphere whose

geodesics are the great circles are in one-to-one correspondence

with the smooth quadrics (i.e. a smooth algebraic curves of degree

2) C ⊂ CP
2 without real points.

Related to rectilinear Finsler metrics on S2 of constant positive

Finsler-Gauss curvature as studied by Bryant (1997).

A Weyl structure [g, β] on an oriented surface M is said to be positive

(or has positive curvature) if

(K − δβ)dA > 0.

Theorem (Bryant, ICM 2006, M–, 2009). Every oriented positive

compact Weyl-Zoll surface gives rise to an oriented K = 1 Finsler

2-sphere (unique up to isometry) with 2π-periodic geodesic flow.

Conversely every oriented compact K = 1 Finsler surface with

2π-periodic geodesic flow gives rise to an oriented positive Weyl-Zoll

2-sphere (unique up to diffeomorphism).



Sketch of proof
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Locally translate [g] : M→ C(M) being a holomorphic curve into a

condition for σ for [g]-isothermal coordinates .

Use: σ commutes with [g] and ν : B→ C(M), j2
0
φ 7→ [(φ∗gE)φ(0)] for

orientation preserving [g]-isothermal coordinates  : U→ R2.

B

U

C(M)

OO

σ
xxqq
qq
qq
q

ν

ffMMMMMMM[g]|U

Lemma. Let (X,J) be a complex surface, μ1, μ2 ∈ Ω
1,0(X,C) a basis

for the (1,0)-forms and ƒ : → X a 2-submanifold with

ƒ∗(Re(μ1)∧ m(μ1)) 6= 0.

Then (ƒ ,) is a holomorphic curve ⇐⇒ ƒ∗(μ1 ∧ μ2) = 0.



Relate (C(M), J) to (B, θ)
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Let α1 = θ
1
0
+ iθ2

0
and α2 =
�

θ1
2
+ θ2

1

�

+ i
�

θ2
2
− θ1

1

�

.

Proposition. The map ν : B→ C(M), j2
0
φ 7→ [(φ∗gE)φ(0)] makes B

into a principal bundle over C(M). Moreover ∃ a unique complex

structure J on C(M) such that

μ ∈ Ω
(1,0)

J (C(M)) ⇐⇒ ν∗μ = λ1α1 + λ2α2, λ ∈ C
∞(B,C).

Example. (M2, [∇]) = (S2, [Dg0]). Then ν : SL(3,R)→ CP
2 \ RP2

(g1, g2, g3) 7→ [g1 × (g2 + ig3)]

EDS on B, I =
¬

θ0
0
,dθ1

0
,dθ2

0
,Re (α1 ∧ α2) , m (α1 ∧ α2)

¶

Lemma. Let  : U→ R2 be [g]-isothermal orientation preserving

coordinates. Then [g]|U : U→ C(M) is a holomorphic curve if and only

if σ : U→ B satisfies (σ)
∗I = 0.
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EDS for Weyl metrisability

I
′ =
¬

θ0
0
,dθ1

0
,dθ2

0
, θ1

0
∧ (3θ2

1
+ θ1

2
), θ2

0
∧ (θ2

1
+ 3θ1

2
)
¶

.

EDS for holomorphic curves

I =
¬

θ0
0
,dθ1

0
,dθ2

0
,Re (α1 ∧ α2) , m (α1 ∧ α2)

¶

Finally observe

�

θ1
0
∧ (3θ2

1
+ θ1

2
)
�

+ i
�

θ2
0
∧ (θ2

1
+ 3θ1

2
)
�

= α1 ∧ α2 + 3iᾱ1 ∧ θ0
0
+ 2idᾱ1

and that

Dg,β ∼ Dg,β′ ⇒ β = β′.
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