Weyl metrisability for projective surfaces

Thomas Mettler University of California at Berkeley

Workshop on Moving Frames in Geometry Montréal, June 2011

Projective structure

M, connected, smooth *n*-manifold, $n \ge 2$. ∇ affine connection with $T_{\nabla} = 0$.

 ∇_1 , ∇_2 are said to be **projectively equivalent** if they have the same geodesics, considered as unparametrised curves. An equivalence class [∇] is called a **projective structure**.

Projectively equivalent connections induce the same parallel transport on the projectivised tangent bundle $\mathbb{P}(TM) = (TM \setminus \{0_M\})/\mathbb{R}^*$

Theorem (Weyl, 1921). ∇^1 , ∇^2 are projectively equivalent iff there exists a 1-form β such that

$$\nabla_X^1 Y - \nabla_X^2 Y = \beta(X)Y + \beta(Y)X.$$

 $(M^n, [\nabla])$ is called **projectively flat** if locally the geodesics can be mapped to straight lines in \mathbb{R}^n .

Weyl projective curvature

Theorem (Thomas, 1925). For a projective structure $[\nabla]$, the functions (defined w.r.t coordinates)

$$\Pi_{kl}^{i} = \Gamma_{kl}^{i} - \frac{1}{n+1} \left(\delta_{k}^{i} \Gamma_{al}^{a} + \delta_{l}^{i} \Gamma_{ak}^{a} \right)$$

are projectively invariant and locally fully describe $[\nabla]$.

Theorem (Weyl, 1921). A projective *n*-manifold (M, $[\nabla]$), $n \ge 3$, is projectively flat iff the Weyl projective curvature tensor

$$\begin{split} W^{i}_{jkl} &= B^{i}_{jkl} + \frac{1}{n-1} \left(\delta^{i}_{k} B^{a}_{jla} - \delta^{i}_{l} B^{a}_{jka} \right), \\ B^{i}_{jkl} &= \Pi^{i}_{lj,k} - \Pi^{i}_{kj,l} + \Pi^{a}_{lj} \Pi^{i}_{ka} - \Pi^{a}_{kj} \Pi^{i}_{la}, \end{split}$$

vanishes. For n = 2, $W_{jkl}^i = 0$, but there are other obstructions to flatness.

Problem (R. Liouville, 1889). Given $(M^2, [\nabla])$ does there exist a Riemannian metric g with $D^g \sim \nabla$?

Theorem (R. Liouville 1889). $D^g \sim \nabla$ iff

$$\mathsf{d}_{[\nabla]}\left(g\otimes\det g^{-2/3}\right)=0$$

where $d_{[\nabla]}$ is a linear first order differential operator which is projectively invariant.

Example $D^{g_E} + g_E \otimes \beta^{\#}$ with $\beta = -y dx + x dy$ is not projectively equivalent to a Levi-Civita connection.

Bryant, Dunajski & Eastwood solve Riemannian metrisability problem for real analytic projective surfaces in 2009.

Related problems

Theorem (Alvarez-Paiva & Berck, 2010, Bryant). Locally every surface path geometry is Finsler metrisable.

An affine torsion-free connection preserving a conformal structure is called a Weyl connection.

Theorem (Weyl, 1918). ∇ preserves [g] iff \exists a 1-form β such that

$$\nabla g = 2\beta \otimes g. \tag{1}$$

Given (g, β) , $D^{g,\beta}$: $(X, Y) \mapsto D_X^g Y + g(X, Y)\beta^\# - \beta(X)Y - \beta(Y)X$ is the unique connection solving (1).

 $(e^{2f}g,\beta + df)$ induces the same Weyl connection. Equivalence class $[g,\beta]$ is called a Weyl structure.

 $[g, \beta]$ is called compatible with $[\nabla]$ if $D^{g, \beta} \sim \nabla$.

Problem. Given $(M^2, [\nabla])$, does there exist a Weyl structure compatible with $[\nabla]$? ($\beta \text{ exact} \leftrightarrow \text{Riem. metrisability problem}$)

Theorem (Cartan, 1921). *Given* $(M^2, [\nabla])$, there exists a SL(3, \mathbb{R}) \supset *H*-bundle π : $B \rightarrow M$ and $\theta \in \Omega^1(B, \mathfrak{sl}(3, \mathbb{R}))$ such that

(i) $\theta_b : T_b B \to \mathfrak{sl}(3, \mathbb{R})$ is an isomorphism and $R_h^* \theta = h^{-1} \theta h$.

(ii) $\theta(X_v) = v$ for every fundamental vector field of $\pi : B \to M$.

(iii) Writing $\theta = (\theta_k^i)_{i,k=0..2}$, the leaves of the foliation given by $\left(\mathbb{R}\left\{\theta_0^2, \theta_1^2\right\}\right)^{\perp}$ project to geodesics on M.

(iv) For $\omega \in \Omega^2(M)$ with $\omega > 0$, $\pi^* \omega = f \theta_0^1 \wedge \theta_0^2$ for $f \in C^{\infty}(B, \mathbb{R}^+)$. (v) The curvature 2-form $\Theta = d\theta + \theta \wedge \theta$ satisfies

$$\Theta = \begin{pmatrix} 0 & L_1 \,\theta_0^1 \wedge \theta_0^2 & L_2 \,\theta_0^1 \wedge \theta_0^2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

for some smooth functions $L_i : B \rightarrow \mathbb{R}$.

Curvature $(L_1\theta_0^1 + L_2\theta_0^2) \otimes (\theta_0^1 \wedge \theta_0^2) = - \star dK \otimes dA$ for $\nabla \sim D^g$.

B consists of the 2-jets of local diffeomorphisms $\varphi : B_{\varepsilon} 0 \rightarrow M$ which are adapted to the orientation and projective structure on *M*.

 $\varphi'_0: T_0 \mathbb{R}^2 \to T_{\varphi(0)} M$ is orientation preserving and $x = \varphi^{-1} \circ \gamma$ has vanishing curvature at $0 \in \mathbb{R}^2$ for every $[\nabla]$ -geodesic γ with $\gamma(0) = \varphi(0)$.

H is the Lie group of 2-jets of linear fractional transformations of the form $a_{1}x$

$$f_{a,b}: x \mapsto \frac{d \cdot x}{1 + b \cdot x}, \quad a \in \mathrm{GL}^+(2,\mathbb{R}), b^t \in \mathbb{R}.$$
$$\tilde{H} = \left\{ h_{a,b} = \left(\begin{array}{c} \det a^{-1} & b \\ 0 & a \end{array} \right) \middle| a \in \mathrm{GL}^+(2,\mathbb{R}), b^t \in \mathbb{R}^2 \right\}$$

 $h_{a,b} \mapsto j_0^2(f_{\tilde{a},\tilde{b}})$ where $\tilde{a} = a \det a, \tilde{b} = b \det a$ identifies H with $\tilde{H} \subset SL(3, \mathbb{R}) \simeq PL(2, \mathbb{R})$.

Coordinate section

Orientation preserving coordinates $x : U \rightarrow \mathbb{R}^2$ induce a coordinate section sending $p \in U$ to the 2-jet $j_0^2 \varphi$ defined by

$$\varphi(0) = p, \quad \partial_k (x \circ \varphi)^i(0) = \delta^i_{k'}, \quad \partial_k \partial_l (x \circ \varphi)^i(0) = -\Pi^i_{kl}(p).$$

Coordinate sections satisfy

$$\sigma_x^* \theta = \begin{pmatrix} 0 & \zeta_1 dx^1 + \zeta_2 dx^2 & \zeta_2 dx^1 + \zeta_3 dx^2 \\ dx^1 & -\kappa_1 dx^1 - \kappa_2 dx^2 & -\kappa_2 dx^1 - \kappa_3 dx^2 \\ dx^2 & \kappa_0 dx^1 + \kappa_1 dx^2 & \kappa_1 dx^1 + \kappa_2 dx^2 \end{pmatrix},$$

with

$$\kappa_0 = \Pi_{11}^2, \quad \kappa_1 = \Pi_{12}^2, \quad \kappa_2 = \Pi_{22}^2, \quad \kappa_3 = -\Pi_{22}^1.$$

Integral manifolds of the EDS

$$\left\langle \theta_{0}^{0}, \mathrm{d}\theta_{0}^{1}, \mathrm{d}\theta_{0}^{2} \right\rangle, \quad \Theta = \theta_{0}^{1} \wedge \theta_{0}^{2}$$

Conversely integral manifolds locally give coordinate sections.

Weyl metrisability

Lemma. Suppose $(M^2, [\nabla])$ admits a compatible Weyl structure $[g, \beta]$, then in a neighbourhood U_p of every point $p \in M$ there exists a coordinate section $\sigma_x : U_p \to B$ which is an integral manifold of

$$\mathcal{I}' = \left\langle \theta_0^0, \mathrm{d}\theta_0^1, \mathrm{d}\theta_0^2, \theta_0^1 \wedge (3\theta_1^2 + \theta_2^1), \theta_0^2 \wedge (\theta_1^2 + 3\theta_2^1) \right\rangle, \quad \Theta = \theta_0^1 \wedge \theta_0^2.$$

Conversely every coordinate section $\sigma_x : U \subset M \rightarrow B$ which is an integral manifold of (\mathcal{I}', Ω) gives rise to a Weyl structure $[g, \beta]$ on U which is compatible with $[\nabla]$.

"Proof". Locally Weyl metrisability is equivalent to finding coordinates x so that

$$\kappa_0 = 3\kappa_2, \quad 3\kappa_1 = \kappa_3.$$

Weyl structure is given by $[x^*g_E, -\kappa_3 dx^1 + \kappa_0 dx^2]$.

The coordinates x are isothermal for [g].

Linear Pfaffian system

Consider $A = B \times \mathbb{R}^4$ with (a_i coordinates on \mathbb{R}^4)

$$\begin{split} \varphi^{1} &= \theta_{1}^{1} + a_{1}\theta_{0}^{1} + a_{2}\theta_{0}^{2}, \\ \varphi^{2} &= \theta_{2}^{2} - a_{1}\theta_{0}^{1} - a_{2}\theta_{0}^{2}, \\ \varphi^{3} &= \theta_{2}^{1} + a_{2}\theta_{0}^{1} + 3a_{1}\theta_{0}^{2}, \\ \varphi^{4} &= \theta_{1}^{2} - 3a_{2}\theta_{0}^{1} - a_{1}\theta_{0}^{2}. \end{split}$$

Integral manifolds of the linear Pfaffian system

$$\mathcal{I} = \left\langle \varphi^1, \varphi^2, \varphi^3, \varphi^4 \right\rangle, \Theta = \theta_0^1 \wedge \theta_0^2$$

correspond to the integral manifolds of (\mathcal{I}', Θ) .

 (\mathcal{I}, Θ) is Frobenius, determined and elliptic.

Elliptic PDE theory yields local existence of solutions in the smooth category.

Conformal structure

Think of a conformal structure as a *G*-structure where *G* is the Lie group

$$CO(n) = \left\{ a \in GL(n, \mathbb{R}) \, | \, aa^t = \lambda I_n, \, \lambda \in \mathbb{R}^+ \right\}.$$

For n = 2 we have $GL(1, \mathbb{C}) \simeq CO^+(2) = CO(2) \cap GL^+(2, \mathbb{R})$.

A conformal structure [g] on the oriented surface M is a section of the bundle $\rho : C(M) \rightarrow M$ where

$$\mathcal{C}(M) = \mathcal{F}^+/\mathsf{GL}(1,\mathbb{C})$$

and \mathcal{F}^+ is the total space of bundle of positively oriented frames. $\mathcal{C}(M) \simeq \mathcal{J}^+(M)$, the bundle of orientation compatible "twistors" whose fibre at $p \in M$ is

$$\mathcal{J}^+(M)_\rho = \left\{ j \in \operatorname{Aut}(T_\rho M) \, | \, j^2 = -\operatorname{Id}_{T_\rho M}, \, \omega(\nu, j(\nu)) \geq 0 \text{ for } \omega > 0 \right\}.$$

Complex structure on $\mathcal{J}(M^2)$

Theorem (Dubois-Violette '83, O'Brian & Rawnsley '85). An affine torsion-free connection ∇ on TM^{2n} induces an almost complex structure \mathfrak{J} on $\mathcal{J}(M)$ which is integrable if and only if the Weyl projective curvature tensor of ∇ vanishes.

Observation \mathfrak{J} does only depend on $[\nabla]$.

If *M* is oriented, the subbundle $\kappa : \mathcal{J}^+(M) \to M$ of orientation compatible twistors inherits an almost complex structure as well.

For n = 1 we have

 $W_{[\nabla]}=0,$

thus for an oriented projective surface (M, [∇]) the manifold C(M) is a complex surface.

Weyl metrisability problem

Theorem (M–). A conformal structure [g] on an oriented projective surface (M, $[\nabla]$) underlies a $[\nabla]$ -compatible Weyl structure [g, β] if and only if [g] : $M \rightarrow C(M)$ is a holomorphic curve.

 $[g]: M \to \mathcal{C}(M)$ is a holomorphic curve if

 $(J\circ [g]')(T_pM)=[g]'(T_pM), \quad \forall \, p\in M,$

where $J : T\mathcal{C}(M) \to T\mathcal{C}(M)$ is the complex structure map of $\mathcal{C}(M)$.

Corollary (M–). Every projective surface locally admits a compatible Weyl structure.

Example. $(M, [\nabla]) = (S^2, [D^{g_0}])$

 $\mathcal{C}(\mathbb{S}^2) \simeq \mathbb{CP}^2 \setminus \mathbb{RP}^2.$

Base-point projection is given by $\rho_0 : [z] \mapsto [\operatorname{Re}(z) \times \operatorname{Im}(z)]$.

The flat case

Corollary (M–). The Weyl structures on the 2-sphere whose geodesics are the great circles are in one-to-one correspondence with the smooth quadrics (i.e. a smooth algebraic curves of degree 2) $C \subset \mathbb{CP}^2$ without real points.

Related to rectilinear Finsler metrics on S^2 of constant positive Finsler-Gauss curvature as studied by Bryant (1997).

A Weyl structure $[g, \beta]$ on an oriented surface *M* is said to be **positive** (or has **positive curvature**) if

 $(K-\delta\beta)\,dA>0.$

Theorem (Bryant, ICM 2006, M–, 2009). Every oriented positive compact Weyl-Zoll surface gives rise to an oriented K = 1 Finsler 2-sphere (unique up to isometry) with 2π -periodic geodesic flow. Conversely every oriented compact K = 1 Finsler surface with 2π -periodic geodesic flow gives rise to an oriented positive Weyl-Zoll 2-sphere (unique up to diffeomorphism).

Sketch of proof

Locally translate $[g]: M \to C(M)$ being a holomorphic curve into a condition for σ_x for [g]-isothermal coordinates x.

Use: σ_x commutes with [g] and $\nu : B \to \mathcal{C}(M)$, $j_0^2 \varphi \mapsto [(\varphi_* g_E)_{\varphi(0)}]$ for orientation preserving [g]-isothermal coordinates $x : U \to \mathbb{R}^2$.

Lemma. Let (X,J) be a complex surface, $\mu_1, \mu_2 \in \Omega^{1,0}(X, \mathbb{C})$ a basis for the (1,0)-forms and $f : \Sigma \to X$ a 2-submanifold with

 $f^*(\operatorname{Re}(\mu_1) \wedge \operatorname{Im}(\mu_1)) \neq 0.$

Then (f, Σ) is a holomorphic curve $\iff f^*(\mu_1 \land \mu_2) = 0$.

Relate (C(M), J) **to** (B, θ)

Let
$$\alpha_1 = \theta_0^1 + i\theta_0^2$$
 and $\alpha_2 = (\theta_2^1 + \theta_1^2) + i(\theta_2^2 - \theta_1^1)$.

Proposition. The map $\nu : B \to \mathcal{C}(M)$, $j_0^2 \varphi \mapsto [(\varphi_* g_E)_{\varphi(0)}]$ makes B into a principal bundle over $\mathcal{C}(M)$. Moreover \exists a unique complex structure J on $\mathcal{C}(M)$ such that

$$\mu \in \Omega_J^{(1,0)}(\mathcal{C}(M)) \iff \nu^* \mu = \lambda_1 \alpha_1 + \lambda_2 \alpha_2, \quad \lambda_i \in C^{\infty}(B, \mathbb{C}).$$

Example. $(M^2, [\nabla]) = (\mathbb{S}^2, [D^{g_0}])$. Then $\nu : SL(3, \mathbb{R}) \to \mathbb{CP}^2 \setminus \mathbb{RP}^2$

 $(g_1,g_2,g_3)\mapsto [g_1\times(g_2+ig_3)]$

EDS on *B*, $\mathcal{I} = \left\langle \theta_0^0, d\theta_0^1, d\theta_0^2, \operatorname{Re}(\alpha_1 \wedge \alpha_2), \operatorname{Im}(\alpha_1 \wedge \alpha_2) \right\rangle$

Lemma. Let $x : U \to \mathbb{R}^2$ be [g]-isothermal orientation preserving coordinates. Then $[g]|_U : U \to C(M)$ is a holomorphic curve if and only if $\sigma_x : U \to B$ satisfies $(\sigma_x)^* \mathcal{I} = 0$.

EDS for Weyl metrisability

$$\mathcal{I}' = \left\langle \theta_0^0, \mathrm{d}\theta_0^1, \mathrm{d}\theta_0^2, \theta_0^1 \wedge (3\theta_1^2 + \theta_2^1), \theta_0^2 \wedge (\theta_1^2 + 3\theta_2^1) \right\rangle.$$

EDS for holomorphic curves

$$\mathcal{I} = \left\langle \theta_0^0, d\theta_0^1, d\theta_0^2, \operatorname{Re}(\alpha_1 \wedge \alpha_2), \operatorname{Im}(\alpha_1 \wedge \alpha_2) \right\rangle$$

Finally observe

$$\begin{pmatrix} \theta_0^1 \wedge (3\theta_1^2 + \theta_2^1) \end{pmatrix} + i \left(\theta_0^2 \wedge (\theta_1^2 + 3\theta_2^1) \right) = \alpha_1 \wedge \alpha_2 + 3i\bar{\alpha}_1 \wedge \theta_0^0 + 2id\bar{\alpha}_1$$

and that
$$D^{g,\beta} \sim D^{g,\beta'} \implies \beta = \beta'.$$