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Sur la théorie, si importante sans doute, mais

pour nous si obscure, des "groupes de Lie infinis#,

nous ne savons rien que ce qui trouve dans les

mémoires de Cartan, première exploration à travers

une jungle presque impénétrable; mais celle-ci

menace de se refermer sur les sentiers déjà tracés, si

l’on ne procède bientôt à un indispensable travail de

défrichement.

— André Weil, 1947



What’s the Difficulty with Infinite–Dimensional Groups?

• Lie invented Lie groups to study symmetry and solution of
differential equations.

♦ In Lie’s time, there were no abstract Lie groups. All groups
were realized by their action on a space.

♠ Therefore, Lie saw no essential distinction between finite-
dimensional and infinite-dimensional group actions.

However, with the advent of abstract Lie groups, the two
subjects have gone in radically different directions.

♥ The general theory of finite-dimensional Lie groups has been
rigorously formalized and applied.

♣ But there is still no generally accepted abstract object that
represents an infinite-dimensional Lie pseudo-group!
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Lie Pseudo-groups — History

• Lie, Medolaghi, Vessiot

• É. Cartan

• Ehresmann, Libermann

• Kuranishi, Spencer, Singer, Sternberg, Guillemin,
Kumpera, . . .



Lie Pseudo-groups in Applications

• Relativity

• Noether’s (Second) Theorem

• Gauge theory and field theories:
Maxwell, Yang–Mills, conformal, string, . . .

• Fluid mechanics, metereology:
Navier–Stokes, Euler, boundary layer, quasi-geostropic, . . .

• Linear and linearizable PDEs

• Solitons (in 2 + 1 dimensions): K–P, Davey-Stewartson, . . .

• Kac–Moody

• Morphology and shape recognition

• Control theory

• Geometric numerical integration

• Cartan equivalence problems

• Lie groups !



Lie Pseudo-groups — Moving Frames

♦ Motivation: To develop an algorithmic invariant calculus for Lie group and
pseudo-group actions. Classify and construct differential invariants
— including their generators and syzygies — invariant differential
forms, invariant differential operators, invariant differential equa-
tions, invariant variational problems, etc.

♠ Tools: The equivariant approach to moving frames — which can be
implemented for arbitrary Lie group and most Lie pseudo-group
actions — along with the induced invariant variational bicomplex.

♥ Additional benefits: A new, elementary approach to the structure theory
for Lie pseudo-groups, including explicit construction of Maurer–
Cartan forms and direct, elementary determination of structure
equations from the infinitesimal generators.

=⇒ PJO, Pohjanpelto, Cheh, Itskov, Valiquette



Pseudo-groups

M — analytic (smooth) manifold

Definition. A pseudo-group is a collection of local analytic diffeomorphisms

φ : domφ ⊂ M → M such that

• Identity: 1M ∈ G

• Inverses : φ−1 ∈ G

• Restriction: U ⊂ domφ =⇒ φ | U ∈ G

• Continuation: domφ =
[

Uκ and φ | Uκ ∈ G =⇒ φ ∈ G

• Composition: imφ ⊂ domψ =⇒ ψ ◦φ ∈ G



The Diffeomorphism Pseudo-group

M — m-dimensional manifold

D = D(M) — pseudo-group of
all local analytic diffeomorphisms

Z = φ(z)






z = (z1, . . . , zm) — source coordinates

Z = (Z1, . . . , Zm) — target coordinates






Lψ(φ) = ψ ◦φ — left action

Rψ(φ) = φ ◦ψ−1 — right action



Jets

For 0 ≤ n ≤ ∞:

Given a smooth map φ : M → M , written in local coordinates as

Z = φ(z), let jnφ|z denote its n–jet at z ∈ M , i.e., its nth

order Taylor polynomial or series based at z.

Jn(M, M) is the nth order jet bundle, whose points are the jets.

Local coordinates on Jn(M,M):

(z, Z(n)) = ( . . . za . . . Zb . . . Zb
A . . . ), Zb

A =
∂kZb

∂za1 · · · ∂zak



Diffeomorphism Jets

The nth order diffeomorphism jet bundle is the subbundle

D(n) = D(n)(M) ⊂ Jn(M,M)

consisting of nth order jets of local diffeomorphisms φ : M → M .

The Inverse Function Theorem tells us that D(n) is defined
by the non-vanishing of the Jacobian determinant:

det(Za
b ) = det( ∂Za/∂zb ) .= 0

$ D(n) forms a groupoid under
composition of Taylor polynomials/series.



Groupoid Structure
Double fibration:

D(n)

!
!

"
σ

(n) #
#$
τ
(n)

M M

σ
(n)(z, Z(n)) = z — source map

τ
(n)(z, Z(n)) = Z — target map

You are only allowed to multiply h(n) · g(n) if

σ
(n)(h(n)) = τ

(n)(g(n))

♦ Composition of Taylor polynomials/series is well-defined
only when the source of the second matches the target of
the first.



One-dimensional case: M = R

Source coordinate: x Target coordinate: X

Local coordinates on D(n)(R)

g(n) = (x,X, Xx, Xxx, Xxxx, . . . , Xn)

Diffeomorphism jet:

X[[ h ]] = X + Xx h + 1
2 Xxx h2 + 1

6 Xxxx h3 + · · ·

=⇒ Taylor polynomial/series at a source point x



Groupoid multiplication of diffeomorphism jets:

(X,X,XX,XXX, . . . ) · (x,X, Xx, Xxx, . . . )

= (x,X,XX Xx,XX Xxx + XXX X2
x, . . . )

=⇒ Composition of Taylor polynomials/series

• The groupoid multiplication (or Taylor composition) is only
defined when the source coordinate X of the first multipli-
cand matches the target coordinate X of the second.

• The higher order terms are expressed in terms of Bell polyno-
mials according to the general Fàa–di–Bruno formula.



Pseudo-group Jets

Any pseudo-group G ⊂ D defines

a Lie sub-groupoid G(n) ⊂ D(n).

Definition. G is regular if, for n # 0, its jets σ : G(n) → M

form an embedded subbundle of σ : D(n) → M and the

projection πn+1
n : G(n+1) → G(n) is a fibration.

Definition. A regular, analytic pseudo-group G is called a

Lie pseudo-group of order n# ≥ 1 if every local diffeomor-

phism φ ∈ D satisfying jn!φ ⊂ G(n!) belongs it: φ ∈ G.



In local coordinates, G(n!) ⊂ D(n!) forms a system of
differential equations

F (n!)(z, Z(n!)) = 0

called the determining system of the pseudo-group. The Lie
condition requires that every local solution to the determining
system belongs to the pseudo-group.

What about integrability/involutivity?

Lemma. In the analytic category, for sufficiently large n # 0
the determining system G(n) ⊂ D(n) of a regular pseudo-
group is an involutive system of partial differential equations.

Proof : Cartan–Kuranishi + local solvability.
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Lemma. In the analytic category, for sufficiently large n # 0
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group is an involutive system of partial differential equations.

Proof : regularity + Cartan–Kuranishi + local solvability.



Lie Completion of a Pseudo-group

Definition. The Lie completion G ⊃ G of a regular pseudo-
group is defined as the space of all analytic diffeomorphisms
φ that solve the determining system G(n!).

Theorem. G and G have the same differential invariants, the
same invariant differential forms, etc.

$ Thus, for local geometry, there is no loss in generality assum-
ing all (regular) pseudo-groups are Lie pseudo-groups!
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A Non-Lie Pseudo-group

X = φ(x) Y = φ(y) where φ ∈ D(R)

On the off-diagonal set M = { (x, y) |x .= y }, the pseudo-
group G is regular of order 1, and G(1) ⊂ D(1) is defined by the
first order determining system

Xy = Yx = 0 Xx, Yy .= 0

The general solution to the determining system G(1) forms
the Lie completion G:

X = φ(x) Y = ψ(y) where φ,ψ ∈ D(R)



Structure of Lie Pseudo-groups

Recall:

The structure of a finite-dimensional Lie group
G is specified by its Maurer–Cartan forms — a basis
µ1, . . . , µr for the right-invariant one-forms:

dµk =
∑

i<j

Ck
ij µi ∧ µj



What should be the Maurer–Cartan forms of a
Lie pseudo-group?

Cartan: Use exterior differential systems and
prolongation to determine the structure equations.

We propose a direct approach based on the following
observation:

The Maurer–Cartan forms for a Lie group and hence
Lie pseudo-group can be identified with the right-
invariant one-forms on the jet groupoid G(∞).

The structure equations can be determined immedi-
ately from the infinitesimal determining equations.
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The Variational Bicomplex

The differential one-forms on an infinite jet bundle split into
two types:

• horizontal forms

• contact forms

Consequently, the exterior derivative on D(∞) splits

d = dM + dG

into horizontal (manifold) and contact (group) compo-
nents, leading to the variational bicomplex structure on
the algebra of differential forms on D(∞).



For the diffeomorphism jet bundle

D(∞) ⊂ J∞(M,M)

Local coordinates:

z1, . . . zm

︸ ︷︷ ︸
, Z1, . . . Zm

︸ ︷︷ ︸
, . . . Zb

A, . . .
︸ ︷︷ ︸

source target jet

Horizontal forms:
dz1, . . . , dzm

Basis contact forms:

Θb
A = dG Zb

A = dZb
A −

m∑

a=1

Za
A,a dza



One-dimensional case: M = R

Local coordinates on D(∞)(R)

(x,X, Xx, Xxx, Xxxx, . . . , Xn, . . . )

Horizontal form:
dx

Contact forms:
Θ = dX − Xx dx

Θx = dXx − Xxx dx

Θxx = dXxx − Xxxx dx

...



Maurer–Cartan Forms

Definition. The Maurer–Cartan forms for the diffeomorphism
pseudo-group are the right-invariant one-forms on the
diffeomorphism jet groupoid D(∞).

Key observation: Since the right action only affects source
coordinates, the target coordinate functions Za

are right-invariant.

Thus, when we decompose

dZa = σa + µa

horizontal contact

both components σa, µa are right-invariant one forms.
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Invariant horizontal forms:

σa = dM Za =
m∑

b=1

Za
b dzb

Dual invariant total differentiation operators:

DZa =
m∑

b=1

( Za
b )−1

Dzb

Thus, the invariant contact forms µb
A are obtained by invariant

differentiation of the order zero contact forms:

µb = dG Zb = Θb = dZb −
m∑

a=1

Zb
a dza

µb
A = D

A
Zµb = DZa1 · · · DZanµb b = 1, . . . , m, #A ≥ 0



One-dimensional case: M = R

Contact forms:

Θ = dX − Xx dx

Θx = DxΘ = dXx − Xxx dx

Θxx = D
2
xΘ = dXxx − Xxxx dx

Right-invariant horizontal form:

σ = dM X = Xx dx

Invariant differentiation:

DX =
1

Xx

Dx



Invariant contact forms:

µ = Θ = dX − Xx dx

µX = DXµ =
Θx

Xx

=
dXx − Xxx dx

Xx

µXX = D
2
Xµ =

XxΘxx − XxxΘx

X3
x

=
Xx dXxx − Xxx dXx + (X2

xx − XxXxxx) dx

X3
x

...

µn = D
n
Xµ



The Structure Equations for

the Diffeomorphism Pseudo–group

dµb
A =

∑
Cb,B,C

A,c,d µc
B ∧ µd

C

Formal Maurer–Cartan series:

µb[[ H ]] =
∑

A

1

A!
µb

A HA

H = (H1, . . . , Hm) — formal parameters

dµ[[ H ]] = ∇µ[[ H ]] ∧ (µ[[ H ]] − dZ )

dσ = − dµ[[ 0 ]] = ∇µ[[ 0 ]] ∧ σ



The Structure Equations for

the Diffeomorphism Pseudo–group

dµb
A =

∑
Cb,B,C

A,c,d µc
B ∧ µd

C

Formal Maurer–Cartan series:

µb[[ H ]] =
∑

A

1

A!
µb

A HA

H = (H1, . . . , Hm) — formal parameters

dµ[[ H ]] = ∇µ[[ H ]] ∧ (µ[[ H ]] − dZ )

dσ = − dµ[[ 0 ]] = ∇µ[[ 0 ]] ∧ σ



One-dimensional case: M = R

Structure equations:

dσ = µX ∧ σ dµ[[ H ]] =
dµ

dH
[[ H ]] ∧ (µ[[ H ]] − dZ)

where

σ = Xx dx = dX − µ

µ[[ H ]] = µ + µX H + 1
2 µXX H2 + · · ·

µ[[ H ]] − dZ = −σ + µX H + 1
2 µXX H2 + · · ·

dµ

dH
[[ H ]] = µX + µXX H + 1

2 µXXX H2 + · · ·



In components:

dσ = µ1 ∧ σ

dµn = −µn+1 ∧ σ +
n−1∑

i=0

(
n

i

)

µi+1 ∧ µn−i

= σ ∧ µn+1 −
[ n+1

2 ]∑

j =1

n − 2j + 1

n + 1

(
n + 1

j

)

µj ∧ µn+1−j.

=⇒ Cartan



The Maurer–Cartan Forms

for a Lie Pseudo-group

The Maurer–Cartan forms for a pseudo-group G ⊂ D
are obtained by restricting the diffeomorphism
Maurer–Cartan forms σa, µb

A to G(∞) ⊂ D(∞).

$ $ The resulting one-forms are no longer linearly
independent, but the dependencies can be
determined directly from the infinitesimal
generators of G.
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are obtained by restricting the diffeomorphism
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Infinitesimal Generators

g — Lie algebra of infinitesimal generators of
the pseudo-group G

z = (x, u) — local coordinates on M

Vector field:

v =
m∑

a=1

ζa(z)
∂

∂za
=

p∑

i=1

ξi ∂

∂xi
+

q∑

α=1

ϕα
∂

∂uα

Vector field jet:
jnv 4−→ ζ(n) = ( . . . ζb

A . . . )

ζb
A =

∂#Aζb

∂zA
=

∂kζb

∂za1 · · · ∂zak



The infinitesimal generators of G are the solutions to the
infinitesimal determining equations

L(z, ζ(n)) = 0 (∗)

obtained by linearizing the nonlinear determining equations at
the identity.

• If G is the symmetry group of a system of differential equa-
tions, then (∗) is the (involutive completion of) the usual
Lie determining equations for the symmetry group.
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Theorem. The Maurer–Cartan forms on G(∞) satisfy the
invariantized infinitesimal determining equations

L( . . . Za . . . µb
A . . . ) = 0 ($ $)

obtained from the infinitesimal determining equations

L( . . . za . . . ζb
A . . . ) = 0 ($)

by replacing

• source variables za by target variables Za

• derivatives of vector field coefficients ζb
A by

right-invariant Maurer–Cartan forms µb
A



The Structure Equations

for a Lie Pseudo-group

Theorem. The structure equations for the pseudo-group

G are obtained by restricting the universal diffeomorphism

structure equations

dµ[[ H ]] = ∇µ[[ H ]] ∧ (µ[[ H ]] − dZ )

to the solution space of the linear algebraic system

L( . . . Za . . . µb
A . . . ) = 0.

=⇒ symmetry groups of differential equations



Comparison of StructureEquations

If the action is transitive, then our structure equations are isomorphic
to Cartan’s. However, this is not true for intransitive pseudo-groups.
Whose structure equations are “correct”?

• To find the Cartan structure equations, one first needs to work in an
adapted coordinate chart, which requires identification of the invariants
on M . Ours can be found in any system of local coordinates.

• Cartan’s procedure for identifying the invariant forms is recursive, and not
easy to implement. Ours follow immediately from the structure equations
for the diffeomorphism pseudo-group using merely linear algebra.

• For finite-dimensional intransitive Lie group actions, Cartan’s pseudo-group
structure equations do not coincide with the standard Maurer–Cartan
equations. Ours do (upon restriction to a source fiber).

• Cartan’s structure equations for isomorphic pseudo-groups can be non-
isomorphic. Ours are always isomorphic.
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Lie–Kumpera Example

X = f(x) U =
u

f ′(x)

Infinitesimal generators:

v = ξ
∂

∂x
+ ϕ

∂

∂u
= ξ(x)

∂

∂x
− ξ′(x)u

∂

∂u

Linearized determining system

ξx = −
ϕ

u
ξu = 0 ϕu =

ϕ

u



Maurer–Cartan forms:

σ =
u

U
dx = fx dx, τ = Ux dx +

U

u
du =

−u fxx dx + fx du

fx
2

µ = dX −
U

u
dx = df − fx dx, ν = dU − Ux dx −

U

u
du = −

u

fx
2

( dfx − fxx dx )

µX =
du

u
−

dU − Ux dx

U
=

dfx − fxx dx

fx

, µU = 0

νX =
U

u
(dUx − Uxx dx) −

Ux

u
(dU − Ux dx)

= −
u

fx
3
( dfxx − fxxx dx ) +

u fxx

fx
4

( dfx − fxx dx )

νU = −
du

u
+

dU − Ux dx

U
= −

dfx − fxx dx

fx



First order linearized determining system:

ξx = −
ϕ

u
ξu = 0 ϕu =

ϕ

u

First order Maurer–Cartan determining system:

µX = −
ν

U
µU = 0 νU =

ν

U

Substituting into the full diffeomorphism structure equations
yields the (first order) structure equations:

dµ = − dσ =
ν ∧ σ

U
, dν = − νX ∧ σ −

ν ∧ τ

U

dνX = − νXX ∧ σ −
νX ∧ (τ + 2 ν)

U



Essential Invariants

• The pseudo-group structure equations live on the bundle
τ : G(∞) → M , and the structure coefficients Ci

jk con-
structed above may vary from point to point.

♥ In the case of a finite-dimensional Lie group action,
G(∞) 6 G × M , and this means the basis of Maurer–Cartan
forms on each fiber of G(∞) is varying with the target point
Z ∈ M . However, we can always make a Z–dependent
change of basis to make the structure coefficients constant.

$ However, for infinite-dimensional pseudo-groups, it may not
be possible to find such a change of Maurer–Cartan basis,
leading to the concept of essential invariants.



Action of Pseudo-groups on Submanifolds

a.k.a. Solutions of Differential Equations

G — Lie pseudo-group acting on p-dimensional submanifolds:

N = {u = f(x)} ⊂ M

For example, G may be the symmetry group of a
system of differential equations

∆(x, u(n)) = 0

and the submanifolds are the graphs of solutions u = f(x).

Goal: Understand G–invariant objects (moduli spaces)



Prolongation

Jn = Jn(M,p) — nth order submanifold jet bundle

Local coordinates :

z(n) = (x, u(n)) = ( . . . xi . . . uαJ . . . )

Prolonged action of G(n) on submanifolds:

(x, u(n)) 4−→ (X, Û (n))

Coordinate formulae:

Ûα
J = Fα

J (x, u(n), g(n))

=⇒ Implicit differentiation.



Moving Frames

In the finite-dimensional Lie group case, a moving frame is

defined as an equivariant map

ρ(n) : Jn −→ G



However, we do not have an appropriate abstract object to

represent our pseudo-group G.

Consequently, the moving frame will be an equivariant section

ρ(n) : Jn −→ H(n)

of the pulled-back pseudo-group jet groupoid:

G(n) H(n)

% %
M & Jn.



Moving Frames for Pseudo–Groups

Definition. A (right) moving frame of order n is a right-

equivariant section ρ(n) : V n → H(n) defined on an open

subset V n ⊂ Jn.

=⇒ Groupoid action.

Proposition. A moving frame of order n exists if and only if

G(n) acts freely and regularly.



Moving Frames for Pseudo–Groups

Definition. A (right) moving frame of order n is a right-

equivariant section ρ(n) : V n → H(n) defined on an open

subset V n ⊂ Jn.

=⇒ Groupoid action.

Proposition. A moving frame of order n exists if and only if

G(n) acts freely and regularly.



Freeness
For Lie group actions, freeness means trivial isotropy:

Gz = { g ∈ G | g · z = z } = {e}.

For infinite-dimensional pseudo-groups, this definition cannot work, and one
must restrict to the transformation jets of order n, using the nth order
isotropy subgroup:

G(n)
z(n) =

{
g(n) ∈ G(n)

z

∣∣∣ g(n) · z(n) = z(n)
}

Definition. At a jet z(n) ∈ Jn, the pseudo-group G acts

• freely if G(n)
z(n) = {1(n)

z }

• locally freely if
• G(n)

z(n) is a discrete subgroup of G(n)
z

• the orbits have dimension rn = dimG(n)
z

=⇒ Kumpera’s growth bounds on Spencer cohomology.



Persistence of Freeness

Theorem. If n ≥ 1 and G(n) acts (locally) freely

at z(n) ∈ Jn, then it acts (locally) freely at any

z(k) ∈ Jk with π̃k
n(z(k)) = z(n) for all k > n.



The Normalization Algorithm

To construct a moving frame :
I. Compute the prolonged pseudo-group action

uαK 4−→ Uα
K = Fα

K(x, u(n), g(n))

by implicit differentiation.

II. Choose a cross-section to the pseudo-group orbits:

uακ

Jκ
= cκ, κ = 1, . . . , rn = fiber dim G(n)



III. Solve the normalization equations

Uακ

Jκ
= Fακ

Jκ
(x, u(n), g(n)) = cκ

for the nth order pseudo-group parameters

g(n) = ρ(n)(x, u(n))

IV. Substitute the moving frame formulas into the un-

normalized jet coordinates uαK = Fα
K(x, u(n), g(n)).

The resulting functions form a complete system of nth order

differential invariants

IαK(x, u(n)) = Fα
K(x, u(n), ρ(n)(x, u(n)))



Lie–Tresse–Kumpera Example

X = f(x), Y = y, U =
u

f ′(x)

Horizontal coframe

dH X = fx dx, dH Y = dy,

Implicit differentiations

DX =
1

fx

Dx, DY = Dy.



Prolonged pseudo-group transformations on surfaces S ⊂ R3:

X = f Y = y U =
u

fx

UX =
ux

f 2
x

−
u fxx

f 3
x

UY =
uy

fx

UXX =
uxx

f 3
x

−
3ux fxx

f 4
x

−
u fxxx

f 4
x

+
3u f 2

xx

f 5
x

UXY =
uxy

f 2
x

−
uy fxx

f 3
x

UY Y =
uyy

fx

f, fx, fxx, fxxx, . . . — pseudo-group parameters

=⇒ action is free at every order.



Coordinate cross-section

X = f = 0, U =
u

fx

= 1, UX =
ux

f 2
x

−
u fxx

f 3
x

= 0, UXX = · · · = 0.

Moving frame

f = 0, fx = u, fxx = ux, fxxx = uxx.

Differential invariants

UY =
uy

fx

4−→ J = ι(uy) =
uy

u

UXY = · · · 4−→ J1 = ι(uxy) =
uuxy − uxuy

u3

UY Y = · · · 4−→ J2 = ι(uxy) =
uyy

u
UXXY 4−→ J3 = ι(uxxy) UXY Y 4−→ J4 = ι(uxyy) UY Y Y 4−→ J5 = ι(uyyy)



Invariant horizontal forms

dH X = fx dx 4−→ u dx, dH Y = dy 4−→ dy,

Invariant differentiations

D1 =
1

u
Dx D2 = Dy

Higher order differential invariants: Dm
1 Dn

2 J

J,1 = D1J =
uuxy − uxuy

u3
= J1,

J,2 = D2J =
uuyy − u2

y

u2
= J2 − J2.

Recurrence formulae:
D1J = J1, D2J = J2 − J2,

D1J1 = J3, D2J1 = J4 − 3J J1,

D1J2 = J4, D2J2 = J5 − J J2,


