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Assume we have a general convex pentagon.

For example

We will construct a new pentagon by joining every other vertex.
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Gloria Maŕı Beffa The pentagram map and generalizations: integrable discretizations of AGD flows



Assume we have a general convex pentagon. For example

We will construct a new pentagon by joining every other vertex.
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The new pentagon is projectively
equivalent to the original pentagon.

To see this we use: Any pentagon is
projectively determined by the
cross-ratio of the four lines emerging
from each vertex and joining it to the
other vertices.
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Assume we have a hexagon instead.

We can make the same construction
and recover another hexagon.

This new hexagon is NOT projectively equivalent to the original one. But

if we repeat the construction again

Gloria Maŕı Beffa The pentagram map and generalizations: integrable discretizations of AGD flows



Assume we have a hexagon instead. We can make the same construction
and recover another hexagon.

This new hexagon is NOT projectively equivalent to the original one. But

if we repeat the construction again
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Assume we have a hexagon instead. We can make the same construction
and recover another hexagon.

This new hexagon is NOT projectively equivalent to the original one. But

if we repeat the construction again, then IT IS.
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These are not only Euclidean constructions, but also projective
constructions.

Assume our polygons are defined in RP2, let Cn be the space of closed
convex n-gons (that is, maps φ : Z → RP2 with φ(n + k) = φ(k) for all
k ∈ Z and such that its image is convex). Let

Tn : Cn → Cn
be the map taking an n-gon to the one described before (Tn is called the
pentagram map).

Let In be the space of projective invariants of closed n-gons and let
T̃n : In → In be the invariantization of Tn. Then T̃5 = id and T̃6 is in
involution since T̃ 2

6 = id .

A natural question is:
Given n, is there a number N such that T̃ N

n = id ?

The answer is: not necessarily, and it was only recently partially answered
by Richard Schwartz, Serge Tabachnikov and Valentin Ovsienko in

The Pentagram map: a discrete integrable system,
Communications in Math. Physics (2010)
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Definition
A twisted n-gon is a map φ : Z → RP2 such that

φ(k + n) = Mφ(k)

for all k and for some projective automorphism M.

If the image of φ is strictly convex, we say it is a universally convex
n-gon.

Theorem
(Ovsienko, Schwartz, Tabachnikov 2010) The projective invariants of
almost every universally convex n-gon lie on a smooth torus that has a
T̃n-invariant affine structure. That is, the invariants of almost every
universally convex n-gon undergo quasi-periodic motion under the
invariantization of the pentagram map.
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How did they prove the theorem?

There exists a Poisson structure linked to the pentagram map and a
family of functions that generate its kernel. The map T̃n preserves the
bracket and there exist a number of functions (half the dimension) that
are preserved by T̃n and that Poisson commute - they define the torus for
almost all choices of monodromy. The map on the torus is a translation
in the affine structure.

In that sense, the invariantization of the pentagram map is an integrable
system (even though it is a map, not a flow - the pentagram map is
discrete in both time and space).

The connection to integrable systems goes beyond being integrable.

Theorem
(Ovsienko-Schwantz-Tabachnikov 2010) The continuous limit (in both
time and space) of the invariantization of the pentagram map is the
Boussinesq equation.
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Gloria Maŕı Beffa The pentagram map and generalizations: integrable discretizations of AGD flows



How did they prove the theorem?

There exists a Poisson structure linked to the pentagram map and a
family of functions that generate its kernel. The map T̃n preserves the
bracket and there exist a number of functions (half the dimension) that
are preserved by T̃n and that Poisson commute - they define the torus for
almost all choices of monodromy. The map on the torus is a translation
in the affine structure.

In that sense, the invariantization of the pentagram map is an integrable
system (even though it is a map, not a flow - the pentagram map is
discrete in both time and space).

The connection to integrable systems goes beyond being integrable.

Theorem
(Ovsienko-Schwantz-Tabachnikov 2010) The continuous limit (in both
time and space) of the invariantization of the pentagram map is the
Boussinesq equation.
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Gloria Maŕı Beffa The pentagram map and generalizations: integrable discretizations of AGD flows



How did they prove the theorem?

There exists a Poisson structure linked to the pentagram map and a
family of functions that generate its kernel. The map T̃n preserves the
bracket and there exist a number of functions (half the dimension) that
are preserved by T̃n and that Poisson commute - they define the torus for
almost all choices of monodromy. The map on the torus is a translation
in the affine structure.

In that sense, the invariantization of the pentagram map is an integrable
system (even though it is a map, not a flow - the pentagram map is
discrete in both time and space).

The connection to integrable systems goes beyond being integrable.

Theorem
(Ovsienko-Schwantz-Tabachnikov 2010) The continuous limit (in both
time and space) of the invariantization of the pentagram map is the
Boussinesq equation.
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The pentagram map is also connected to a number of other subjects, for
example:

I The structure of 2-frieze patterns. Closed 2-frieze patterns are
equivalent to the projective Maurer-Cartan equation for closed gons.

I Double zig-zag cluster coordinates.

I Arithmetic closed 2-friezes, they are equivalent to triangularizations
of n-gons by diagonals and to Catalan numbers - a theorem by
Conway and Coxeter.

I Configuration theorems: whether or not an n-gon is inscribed in a
conic seems to be connected to whether or not its transformed by a
sequence of pentagram-like maps is equivalent to itself.

For more information see the many papers by Schwartz et als in the

subject.
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Generalizations of the pentagram map

Here are some of the problems to overcome:

1. There are no simple known ways to geometrically describe projective
invariants of an n-gon in 3 or higher dimensions. In Schwartz et al.
work both algebraic and geometric invariants are used.

2. Calculation with the invariants in the case of RP2 is already highly
complicated. One should expect the higher dimensional ones to be
much worse.

3. The biHamiltonian picture is almost completely missing in their
work.

4. There are many different ways to determine a point from a vertex
via intersection of linear subspaces (for example, in RP3 one can use
the intersection of a line and a plane, or the intersection of three
planes).

One needs to choose a guiding idea that will help narrow the possibilities.
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Gloria Maŕı Beffa The pentagram map and generalizations: integrable discretizations of AGD flows



Generalizations of the pentagram map

Here are some of the problems to overcome:

1. There are no simple known ways to geometrically describe projective
invariants of an n-gon in 3 or higher dimensions. In Schwartz et al.
work both algebraic and geometric invariants are used.

2. Calculation with the invariants in the case of RP2 is already highly
complicated. One should expect the higher dimensional ones to be
much worse.

3. The biHamiltonian picture is almost completely missing in their
work.

4. There are many different ways to determine a point from a vertex
via intersection of linear subspaces (for example, in RP3 one can use
the intersection of a line and a plane, or the intersection of three
planes).

One needs to choose a guiding idea that will help narrow the possibilities.
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Generalizations of Boussinesq equation - the AGD flows

The Adler-Gel’fand-Dikii (AGD) flows are defined as follows (Adler 79):
consider scalar differential operators of the form

L = Dn+1 − kn−1Dn−1 + · · ·− k1D − k0

where ki are smooth and periodic, and where D = d
dx . The r -AGD flow

satisfies the equation

Lt = L(Xr L)+ − (LXr )+L

where ()+ selects the local terms, Xr is a Hamiltonian pseudo-differential
operator defining the variation of the Hamiltonian

Hr (L) =

∫
S1

res(Lr/(n+1))dx

and res indicates the residue, or coefficient of the D−1 term.

Boussinesq is the 2-AGD flow for n = 2.
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AGD flows are linked to the projective geometry of curves,

Let u be a parametrized curve in RPm and let γ be a unique lift to Rm+1

such that det(γ, γ ′, . . . , γ(m)) = 1.Then

ρ = (γ, γ ′, . . . , γ(m))

is a left moving frame for u and the Maurer-Cartan matrix K is given by

ρx = ρ


0 0 . . . 0 k0

1 0 . . . 0 k1

. . .
. . . . . .

...
...

0 . . . 1 0 km−1

0 . . . 0 1 0

 .

The invariants ki are called projective Wilczynski invariants for u.

Theorem
(MB 00-06) There exists a geometric evolution of curves in RPn inducing
an r-AGD evolution on ki , for all r . Furthermore, if an appropriate
moving frame ρ̂ is fixed, then the geometric evolution can be explicitly
and algebraically found from ρ̂ and δHr , where Hr is the r-AGD
Hamiltonian.
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Briefly:
We gauge the Wilczynski frame to a different frame ρ̂ so that

ρ̂x = ρ̂


0 κm . . . κ2 κ1

1 0 . . . 0 0
. . .

. . .
. . .

...
...

0 . . . 1 0 0
0 . . . 0 1 0

 .

If ρ̂ = (Γ0, Γ1, . . . , Γn), then the unique lift of the projective curve
evolution given by

γt =

n∑
i=1

δκiHrΓi + r0Γ

induces the r -AGD flow on the invariants κi , where r0 is uniquely
determined from δH and the fact that γt is a lift.

One can also obtain a biHamiltonian structure on the κi induced by a

general one existing on the space of loops on sl(n + 1)∗, etc.
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How can we find generalizations of the pentagram map discretizing AGD
flows, without invariantizing the equations?

We can relate directly the map to the curve evolution realizing the AGD
flow and look for proper continuous limits at the polygon-curve level
rather than at the invariants level.
Assume xn is a discretization of a projective curve u(x), and let Ṽn be a
discretization of the lift γ(x), also a lift for xn. That means
xn+i = u(x + iε) and Ṽn+i = γ(x + iε) for all i .

u(x)=xn

u(x+ ) = xn+1u(x+2 ) = xn+2

u(x- ) = xn-1

u(x-2 ) = xn-2
Denote by uε the
transformed of u
under the continuous
limit of the
pentagram map.
That is,
T (xn) = uε(x).

-
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xn+i = u(x + iε) and Ṽn+i = γ(x + iε) for all i .

u(x)=xn

u(x+ ) = xn+1u(x+2 ) = xn+2

u(x- ) = xn-1

u(x-2 ) = xn-2
Denote by uε the
transformed of u
under the continuous
limit of the
pentagram map.
That is,
T (xn) = uε(x). Let
γε(x) be its lift to
Rm+1.

Gloria Maŕı Beffa The pentagram map and generalizations: integrable discretizations of AGD flows



Example
Assume we have an n-gon in RP3. What should the pentagram map be?

We can look at maps defined by the intersection of a line and a plane as
in

xn

xn+m1

xn+r1

xn+r2

xn+m2

T(xn)
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Example
Assume we have an n-gon in RP3. What should the pentagram map be?
We can look at maps defined by the intersection of a line and a plane as
in - or by three planes as in

xn

xn+m1

xn+r1

xn+r2

xn+m2

T(xn)

xn

xn+r1

xn+m2

xn+n3

xn+m1=xn+n1

xn+r2=xn+n2

xn+r3=xn+m3

T(xn)

Notice that there are infinitely many choices of points. We can associate

line/plane → (r1, r2,m1,m2) 3 planes → (mi , ni , ri ), i = 1, 2, 3

and determine which integers will result in AGD limits.
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Let’s look at the first line/plane case.

Lift everything to R4: a plane lifts the segment, it goes through the origin
and includes the lines Vn+r1 and Vn+r2 . A 3D subspace lifts the plane, it
goes through the origin and contains the lines Vn, Vn+m1 and Vn+m2 .
If T is defined by their intersection, we have the relation

γε(x) = a1γ(x + r1ε) + a2γ(x + r2ε)

= b1γ(x) + b2γ(x + m1ε) + b3γ(x + m2ε).

Expand in ε and use the R4 basis γ, γ ′, γ ′′, γ ′′′. Assume that r1 = −r2,
and mi 6= rj , mi 6= mj for any i , j . The limit looks like

γε(x) = γ(x) +
1

2
ε2

(
γ ′′ −

1

2
k2γ

)
+ o(ε2).

The evolution

γt = γ ′′ −
1

2
k2γ

is the projective realization in RP4 of the AGD flow with Hamiltonian

H(L) =
∫

S1 resL2/4.
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The general case RPm.

Assume we select the intersection of the
segment xn−r xn+r and an m − 1 dimensional subspace of RPm

containing xn.

Theorem
(MB 2011) The lift to Rm+1 of the continuous limit of T is given
by

γε = γ+
1

2
ε2(γ ′′ −

2

m + 1
km−1γ) + o(ε2).

The curve evolution

γt = γ ′′ −
2

m + 1
km−1γ

is the projective realization of the AGD flow in RPm corresponding
to the Hamiltonian H(L) =

∫
S1 res(L2/(m+1)).
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Back to RP3.

Assume we now look at the three planes associated
to the integers r1, r2, r3, n1, n2, n3 and m1,m2,m3.

Theorem
(MB11) If the continuous limit is third order, then

m1m2m3 = n1n2n3 = r1r2r3.

Assume (m1,m2,m3) = (−c , a, b), (n1, n2, n3) = (c ,−a, b) and
(r1, r2, r3) = (c ,−1, ab). Then, the map T is a discretization of the
AGD flow corresponding to H(L) =

∫
S1 res(L3/4)dx if, and only if

c − 1 + a(b − 1)

b − c
= −

5

4
. (1)

There are infinitely many solutions, one of the simplest one is the
three planes π1 = 〈xn−2, xn+3, xn+5〉, π2 = 〈xn−5, xn+2, xn+3〉 and
π3 = 〈xn−5, xn+1, xn−6〉
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Jumping to RP4.

We have four different possible combinations

1. A line and a 3D subspace.

2. One plane and two 3D subspaces.

3. Two planes.

4. Four 3D subspaces.

Case (1) was our general case.

Theorem
(MB11) Assume we have option (3), and assume we require that
the continuous limit is third order. Then, for any choice of
integers, the continuous limit is not the realization of an AGD
flow, and it is not the realization of a Hamiltonian evolution.
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Theorem
(MB11) Assume that the map T is defined following option (2)
with the 3D subspaces containing xn .

Then the continuous limit is
the third order AGD flow in RP4 with Hamiltonian

H(L) =

∫
S1

res(L3/5)dx

whenever the integers satisfy two Dyophantine equations. There
are infinite solutions.
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Ahead of us

1. What is the general picture?

Conjecture

The AGD Hamiltonian flow associated to the L
k

m+1 –Hamiltonian is the
continuous limit of maps defined analogously to the pentagram map
through the intersection of one k − 1-dimensional subspace and a group
of k − 1 m − 1-dimensional subspaces of RPm.

2. For which values of the integers are these maps integrable?

MERCI!

THANKS!
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Gloria Maŕı Beffa The pentagram map and generalizations: integrable discretizations of AGD flows



Ahead of us

1. What is the general picture?

Conjecture

The AGD Hamiltonian flow associated to the L
k

m+1 –Hamiltonian is the
continuous limit of maps defined analogously to the pentagram map
through the intersection of one k − 1-dimensional subspace and a group
of k − 1 m − 1-dimensional subspaces of RPm.

2. For which values of the integers are these maps integrable?

MERCI!

THANKS!
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Gloria Maŕı Beffa The pentagram map and generalizations: integrable discretizations of AGD flows


