Moving Frame methods for solving SE(3) symmetric variational problems

Tânia Gonçalves

Joint work with Elizabeth Mansfield

Moving Frames in Geometry

Montréal, June, 2011

Introduction

Noether's First Theorem yields conservation laws for Lagrangians with a variational symmetry group.

Recently, we proved that Noether's conservation laws can be written as the divergence of the product of a moving frame and a vector of invariants.

Interesting fact New format for Noether's conservation laws reduces the integration problem.

How do these conservation laws simplify one-dimensional variational problems which are invariant under the special Euclidean group SE(3)?

Outline[']

- Moving frames¹
- Invariant calculus of variations²
- Noether's Theorem
- Solution of SE(3) symmetric variational problems

¹M. Fels and P.J. Olver, Acta Appl. Math. **51** (1998) and **55** (1999)

²I.A. Kogan and P.J. Olver, Acta Appl. Math. **76** (2003)

Here we will use the notion of Cartan's moving frame as reformulated by Fels and Olver.

Consider a group G acting on the n-th jet bundle $J^n(X \times U)$, whose action is free and regular.

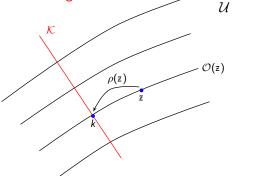


Figure: A local foliation with a transverse cross-section $\rho: \mathcal{U} \to \mathcal{G}$

Moving frame calculation

The cross-section ${\cal K}$ is the locus of ${f \Psi}({f z})=0$. To obtain the frame $ho({f z})$ we solve the system

$$\Psi_j(g \cdot z) = 0, \quad j = 1, ..., r = \dim(G)$$

for the r independent parameters describing G, in other words we solve the normalisation equations. By the IFT, a unique solution of $\Psi(g\cdot z)=0$ yields

$$\rho(g \cdot z) = \rho(z)g^{-1}, \quad \text{or} \quad \rho(g \cdot z) = g^{-1}\rho(z),$$

i.e. $\rho(z)$ is equivariant.

Example Consider SL(2) acting on (x, t, u(x, t)) as follows

$$g \cdot x = x$$
, $g \cdot t = t$, $g \cdot u = \frac{au + b}{cu + d}$,

where

$$g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}, \quad ad - bc = 1.$$

The induced action on u_x , and similarly for other derivatives of u, is defined to be

$$g \cdot u_{x} = \frac{\partial(g \cdot u)}{\partial(g \cdot x)} = \frac{u_{x}}{(cu+d)^{2}}$$

by the chain rule.

Let $\mathbf{z} = (u, u_{\mathsf{X}}, u_{\mathsf{XX}})$ and take $\mathbf{\Psi}(g \cdot \mathbf{z}) = \mathbf{0}$ to be

$$g \cdot u = 0$$
, $g \cdot u_x = 1$, $g \cdot u_{xx} = 0$.

Solving

$$a = \frac{1}{\sqrt{u_X}}, \quad b = -\frac{u}{\sqrt{u_X}}, \quad c = \frac{u_{XX}}{2u_X^{3/2}}.$$

Invariants The components of the cross-section $I(z) = \rho(z) \cdot z$ are invariant.

In our running example

$$I_{111}^{u} = g \cdot u_{xxx}|_{frame} = \frac{u_{xxx}}{u_{x}} - \frac{3}{2} \frac{u_{xx}^{2}}{u_{x}^{2}}, \quad I_{2}^{u} = g \cdot u_{t}|_{frame} = \frac{u_{t}}{u_{x}}$$

are the lowest order invariants. Let $\sigma = I_{111}^u$.

Various notations exist for the invariants in the literature

$$g \cdot u_K^{\alpha}|_{frame} = I_K^{\alpha} = \iota(u_K^{\alpha}) = \overline{\iota}u_K^{\alpha}.$$

Analogously, we have invariant differential operators

$$\mathcal{D}_j = \frac{D}{D(g \cdot x_j)} \bigg|_{frame}.$$

In our running example

$$\mathcal{D}_{x} = \frac{D}{Dx}, \quad \mathcal{D}_{t} = \frac{D}{Dt},$$

and

$$[\mathcal{D}_x, \mathcal{D}_t] = 0.$$

All differential invariants are functions of the I_K^{α} by the Fels-Olver-Thomas Replacement Theorem:

If f(z) is invariant, then

$$f(z) = f(g \cdot z) = f(\rho(z) \cdot z) = f(I(z)).$$

We know that

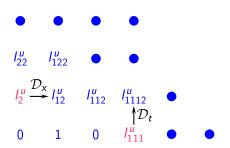
$$\frac{\partial}{\partial x_i} u_K^{\alpha} = u_{Kj}^{\alpha},$$

but $\mathcal{D}_i I_K^{\alpha} \neq I_{Ki}^{\alpha}$; indeed

$$\mathcal{D}_{j}I_{K}^{\alpha}=I_{Kj}^{\alpha}+M_{Kj}^{\alpha},$$

where M_{Ki}^{α} are the error terms.

Example (cont.) We have two generators $\sigma = I_{111}^u$ and I_{2}^u , and to obtain I_{1112}^u we can use one of two paths.



Syzygy between the two generators

$$\mathcal{D}_t \sigma = (\mathcal{D}_x^3 + 2\sigma \mathcal{D}_x + \sigma_x) I_2^u.$$

Invariant calculus of variations

Recall, we want to use the invariantised versions of the Euler-Lagrange equations and Noether's conservation laws to find a solution for symmetric variational problems.

Recall how we calculate the Euler-Lagrange equations for one-dimensional Lagrangians

$$0 = \frac{d}{d\varepsilon}\Big|_{\varepsilon=0} \mathcal{L}[u + \varepsilon v]$$

$$= \frac{d}{d\varepsilon}\Big|_{\varepsilon=0} \int_{a}^{b} L(x, u + \varepsilon v, u_{x} + \varepsilon v_{x}, u_{xx} + \varepsilon v_{xx}, \dots) dx$$

$$= \int_{a}^{b} \left(\frac{\partial L}{\partial u}v + \frac{\partial L}{\partial u_{x}}v_{x} + \frac{\partial L}{\partial u_{xx}}v_{xx} + \dots\right) dx$$

$$= \int_{a}^{b} \left[\left(\frac{\partial L}{\partial u} - \frac{d}{dx}\frac{\partial L}{\partial u_{x}} + \frac{d^{2}}{dx^{2}}\frac{\partial L}{\partial u_{xx}} + \dots\right)v + \frac{d}{dx}\left(\frac{\partial L}{\partial u_{x}}v + \frac{\partial L}{\partial u_{xx}}v_{x} - \left(\frac{d}{dx}\frac{\partial L}{\partial u_{xx}}\right)v + \dots\right)\right] dx$$

$$= \int_{b}^{a} E(L)v dx + \left[\frac{\partial L}{\partial u_{x}}v + \dots\right]_{a}^{b}$$

Invariant calculus of variations

To get the invariantised Euler-Lagrange equations and Noether's conservation laws, we introduce a dummy invariant variable t and set u=u(x,t). Then

$$\frac{\mathrm{d}}{\mathrm{d}\varepsilon}\bigg|_{\varepsilon=0}\mathscr{L}[u^{\alpha}+\varepsilon v^{\alpha}]=\left.\frac{D}{Dt}\right|_{u^{\alpha}_{t}=v^{\alpha}}\mathscr{L}[u^{\alpha}]$$

yield the same symbolic result.

Example (cont.) Consider the one-dimensional Lagrangian with finite number of arguments

$$\mathscr{L}[u] = \int L(\sigma, \sigma_{\mathsf{x}}, \sigma_{\mathsf{xx}}, ...) \mathrm{d}x.$$

Introduce the dummy variable t to effect the variation. This gives a new invariant $I_2^u = u_t/u_x$ with syzygy

$$\mathcal{D}_t \sigma = (\mathcal{D}_x^3 + 2\sigma \mathcal{D}_x + \sigma_x) I_2^u = \mathcal{H} I_2^u.$$

Invariant calculus of variations

Hence,

$$\begin{split} \mathcal{D}_{t} & \int L(\sigma, \sigma_{x}, \sigma_{xx}, \dots) \, \mathrm{d}x \\ & = \int \left(\frac{\partial L}{\partial \sigma} + \frac{\partial L}{\partial \sigma_{x}} \mathcal{D}_{x} + \dots \right) \mathcal{D}_{t} \sigma \, \mathrm{d}x \\ & = \int \underbrace{\left(\frac{\partial L}{\partial \sigma} - \mathcal{D}_{x} \frac{\partial L}{\partial \sigma_{x}} + \mathcal{D}_{x}^{2} \frac{\partial L}{\partial \sigma_{xx}} + \dots \right)}_{E^{\sigma(L)}} \mathcal{H}(I_{2}^{u}) \, \mathrm{d}x \\ & + \left[\frac{\partial L}{\partial \sigma_{x}} \mathcal{D}_{t} \sigma + \frac{\partial L}{\partial \sigma_{xx}} \mathcal{D}_{x} \mathcal{D}_{t} \sigma - \mathcal{D}_{x} \frac{\partial L}{\partial \sigma_{xx}} \mathcal{D}_{t} \sigma + \dots \right]_{a}^{b} \\ & = \int \mathcal{H}^{*} \left(E^{\sigma}(L) \right) I_{2}^{u} \, \mathrm{d}x \\ & + \left[E^{\sigma}(L) \mathcal{D}_{x}^{2} I_{2}^{u} - \mathcal{D}_{x} E^{\sigma}(L) \mathcal{D}_{x} I_{2}^{u} + \mathcal{D}_{x}^{2} E^{\sigma}(L) I_{2}^{u} + 2\sigma E^{\sigma}(L) I_{2}^{u} \right. \\ & + \underbrace{\frac{\partial L}{\partial \sigma_{x}} \mathcal{D}_{t} \sigma + \frac{\partial L}{\partial \sigma_{xx}} \mathcal{D}_{x} \mathcal{D}_{t} \sigma - \mathcal{D}_{x} \frac{\partial L}{\partial \sigma_{xx}} \mathcal{D}_{t} \sigma + \dots \right]_{a}^{b}, \end{split}$$

where \mathcal{H}^* is the adjoint of \mathcal{H} . So $E^u(L) = \mathcal{H}^*E^{\sigma}(L) = 0$.

Noether's Theorem provides first integrals of the Euler-Lagrange equations for one-dimensional variational problems that are invariant under a Lie group.

As shown before, we obtain Noether's conservation laws by carefully keeping track of the boundary terms.

Example (cont.) The conservation laws associated to $\int L(\sigma, \sigma_x, \sigma_{xx}, ...) dx$ are

$$\underbrace{\begin{pmatrix} ad+bc&-2ab&2cd\\ -ac&a^2&-c^2\\ bd&-b^2&d^2\end{pmatrix}}_{R(g)^{-1}} \bigg|_{frame} \begin{pmatrix} -2\mathcal{D}_x E^\sigma(L)\\ \sigma E^\sigma(L)+\mathcal{D}_x^2 E^\sigma(L)\\ -2E^\sigma(L) \end{pmatrix} = \mathbf{c}.$$

Recall the frame is

$$a = \frac{1}{\sqrt{u_x}}, \quad b = -\frac{u}{\sqrt{u_x}}, \quad c = \frac{u_{xx}}{2u_x^{3/2}}, \quad ad - bc = 1.$$

$$R(gh) = R(g)R(h)$$
, so $R(\rho(z))$ is equivariant.

Which representation yields R(g)? How do we calculate the vector of invariants?

Adjoint representation of SL(2) with respect to the infinitesimal vector fields

For

$$g \cdot u = \frac{au + b}{cu + d}$$
, where $ad - bc = 1$,

the infinitesimal vector fields are

$$2\partial_u$$
, ∂_u , $-u^2\partial_u$.

Let $g \in SL(2)$ act on

$$(2\alpha u + \beta - \gamma u^2)\partial_u$$

where α , β and γ are constants.

Thus,

$$g \cdot (2\alpha u + \beta - \gamma u^{2})\partial_{u}$$

$$= (2\alpha(g \cdot u) + \beta - \gamma(g \cdot u)^{2})\partial_{(g \cdot u)}$$

$$= \left(2\alpha \frac{au + b}{cu + d} + \beta - \gamma\left(\left(\frac{au + b}{cu + d}\right)^{2}\right)(cu + d)^{2}\partial_{u}$$

$$= \left(\alpha \beta \gamma\right) \underbrace{\begin{pmatrix} ad + bc & 2bd & -2ac \\ cd & d^{2} & -c^{2} \\ -ab & -b^{2} & a^{2} \end{pmatrix}}_{R(g)} \begin{pmatrix} 2u\partial_{u} \\ \partial_{u} \\ -u^{2}\partial_{u} \end{pmatrix}.$$

Recall the collection of boundary terms

$$E^{\sigma}(L)\mathcal{D}_{x}^{2}l_{2}^{u} - \mathcal{D}_{x}E^{\sigma}(L)\mathcal{D}_{x}l_{2}^{u} + \mathcal{D}_{x}^{2}E^{\sigma}(L)l_{2}^{u} + 2\sigma E^{\sigma}(L)l_{2}^{u}$$
$$+ \frac{\partial L}{\partial \sigma_{x}}\mathcal{D}_{t}\sigma + \frac{\partial L}{\partial \sigma_{xx}}\mathcal{D}_{x}\mathcal{D}_{t}\sigma - \mathcal{D}_{x}\frac{\partial L}{\partial \sigma_{xx}}\mathcal{D}_{t}\sigma + \cdots = k,$$

where k is a constant. Substituting $\mathcal{D}_x^2 l_2^u$, $\mathcal{D}_x l_2^u$ etc. in the above by their differential formulae,

$$\mathcal{D}_{x}^{2} I_{2}^{u} = I_{112}^{u} - \sigma I_{2}^{u},$$

$$\mathcal{D}_{x} I_{2}^{u} = I_{12}^{u},$$

$$\mathcal{D}_{t} \sigma = I_{1112}^{u} - \sigma I_{12}^{u},$$

$$\mathcal{D}_{x} \mathcal{D}_{t} \sigma = I_{11112}^{u} - 4\sigma I_{112}^{u} - \sigma_{x} I_{12}^{u},$$

$$\vdots$$

we obtain the conservation law in the form, linear in the l_{2J}^{μ} ,

$$\left(\begin{array}{ccc} I_2^u & I_{12}^u & \cdots \end{array}\right) \underbrace{\left(\begin{array}{ccc} \mathcal{D}_x^2 E^{\sigma}(L) + \sigma E^{\sigma}(L) \\ -\mathcal{D}_x E^{\sigma}(L) + \cdots \\ E^{\sigma}(L) + \cdots \\ \vdots \end{array}\right)}_{\mathcal{C}^u} = k.$$

Multiplying the vector C^u by the matrix of invariantised infinitesimals, $\Omega^u(I)$, we obtain the vector of invariants

$$v(I) = \begin{pmatrix} -2\mathcal{D}_x E^{\sigma}(L) \\ \sigma E^{\sigma}(L) + \mathcal{D}_x^2 E^{\sigma}(L) \\ -2E^{\sigma}(L) \end{pmatrix}.$$

Noether's Theorem

Theorem Let $\int L(\kappa_1, \kappa_2, ...) ds$ be invariant under $G \times M \to M$ with generating invariants κ_j , for j = 1, ..., N, and let $\widetilde{x_i} = x_i$, for i = 1, ..., p. Introduce a dummy variable t to effect the variation and suppose that

$$\mathcal{D}_t \int L(\kappa_1, \kappa_2, ...) d\mathbf{x} = \int \left[\sum_{i,\alpha} \mathcal{H}_{j,\alpha}^* \mathsf{E}^j(L) I_t^{\alpha} + \mathsf{Div}(P) \right] d\mathbf{x}, \quad (1)$$

where this defines a p-tuple P, whose components are of the form

$$P_{i} = \sum_{\alpha,J} I_{tJ}^{\alpha} C_{J,i}^{\alpha} = \sum_{\alpha,m,J} \mathcal{A}d(\rho)_{km}^{-1} \Omega^{\alpha}(I)_{mJ} C_{J,i}^{\alpha}, \qquad i = 1,...,p$$

and the vectors $C_i^{\alpha} = (C_{J,i}^{\alpha})$. Hence the the r conservation laws obtained via Noether's First Theorem can be written in the form

$$\sum_{i} \mathcal{D}_{\mathsf{X}_{i}} \left(\mathcal{A} d_{\rho}^{-1} \boldsymbol{v}_{i}(I) \right) = 0,$$

where $\mathcal{A}d_{\rho}^{-1}$ is $\mathcal{A}d(g)$ evaluated at the frame and $v(I) = \sum_{\alpha} \Omega^{\alpha}(I) C_{i}^{\alpha}$.

Consider the SE(3) group action on the (x(s), y(s), z(s))-space, parametrised by the Euclidean arc length, given by

$$\widetilde{\mathbf{x}(s)} = \mathsf{R}^{-1}(\mathbf{x}(s) - \mathsf{a}),$$

where $\mathbf{x}(s) = (x(s), y(s), z(s))^T$, \mathbf{R}^{-1} is a three-dimensional rotation, and $\mathbf{a} = (a, b, c)$ a translation vector.

The normalisation equations that define the moving frame are

$$\widetilde{x}=0,\ \widetilde{y}=0,\ \widetilde{z}=0,\ \widetilde{y_s}=0,\ \widetilde{z_s}=0,\ \text{and}\ \widetilde{z_{ss}}=0.$$

Solving these normalisation equations gives us the frame in parametric form

$$a=x,\ b=y,\ c=z,\ \theta=\arctan\left(\frac{y_s}{x_s}\right),\ \nu=\arctan\left(\frac{z_s}{\sqrt{x_s^2+y_s^2}}\right),$$

$$\alpha=\arctan\left(\frac{z_{ss}}{(x_sy_{ss}-y_sx_{ss})\sqrt{x_s^2+y_s^2+z_s^2}}\right).$$

The infinitesimal vector fields generating SE(3) are

$$\begin{split} f_1\partial_x,\ f_2 &= \partial_y,\ f_3 = \partial_z,\ f_4 = y\partial_z - z\partial_y, \\ f_5 &= x\partial_z - z\partial_x,\ f_6 = x\partial_y - y\partial_x. \end{split}$$

Letting $g \in SE(3)$ act on $\mathbf{f} = p_1\mathbf{f}_1 + p_2\mathbf{f}_2 + p_3\mathbf{f}_3 + p_4\mathbf{f}_4 + p_5\mathbf{f}_5 + p_6\mathbf{f}_6$ gives us the representation for g, $\mathcal{A}d(g)$. Evaluating $\mathcal{A}d(g)$ at the frame provides

$$\mathcal{A}d_{
ho}^{-1} = egin{pmatrix} \mathcal{R}^{\mathsf{T}} & O_{3 imes 3} \ D^{\mathsf{T}}\mathcal{R}^{\mathsf{T}} & D^{\mathsf{R}}\mathcal{T}D \end{pmatrix},$$

where

$$\mathcal{R}^{\mathsf{T}} = \begin{pmatrix} x_{\mathsf{s}} & \frac{x_{\mathsf{ss}}}{\kappa} & \frac{k_{1}}{\kappa} \\ y_{\mathsf{s}} & \frac{y_{\mathsf{ss}}}{\kappa} & \frac{k_{2}}{\kappa} \\ z_{\mathsf{s}} & \frac{z_{\mathsf{ss}}}{\kappa} & \frac{k_{3}}{\kappa} \end{pmatrix}, \quad \mathsf{T} = \begin{pmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{pmatrix},$$

and $k_1 = y_s z_{ss} - z_s y_{ss}$, $k_2 = z_s x_{ss} - x_s z_{ss}$, $k_3 = x_s y_{ss} - y_s x_{ss}$, D = diag(1, -1, 1), and $O_{3\times3}$ is the zero matrix.

Let $\mathscr{L}[\kappa,\tau]=\int [L(\kappa,\kappa_s,\tau,\tau_s)-\lambda(s)(\eta-1)]\,\mathrm{d}s$ be the invariantised Lagrangian under the SE(3) group action, where κ is the Euclidean curvature, τ is the torsion and $\eta=\sqrt{x_s^2+y_s^2+z_s^2}$. Differentiation and integration by parts of the invariantised Lagrangian yields two invariantised Euler-Lagrange equations in two unknowns, after using $E^{\kappa}(L)=0$ to eliminate λ

$$\begin{split} \mathsf{E}^{\mathsf{y}}(L) &= (\kappa^2 - \tau^2) \mathsf{E}^{\kappa}(L) + 2\tau \kappa \mathsf{E}^{\tau}(L) - 2L\kappa + \kappa \kappa_s \frac{\partial L}{\partial \kappa_s} + \kappa \tau_s \frac{\partial L}{\partial \tau_s} \\ &\quad + \left(\frac{\tau_s}{\kappa} - \frac{2\tau \kappa_s}{\kappa^2}\right) \mathcal{D}_{\mathsf{s}} \mathsf{E}^{\tau}(L) + \mathcal{D}_{\mathsf{s}}^2 \mathsf{E}^{\kappa}(L) + \frac{2\tau}{\kappa} \mathcal{D}_{\mathsf{s}}^2 \mathsf{E}^{\tau}(L) = 0, \\ \mathsf{E}^{\mathsf{z}}(L) &= -\kappa_s \mathsf{E}^{\tau}(L) + \left(-\kappa + \frac{\tau^2}{\kappa} - \frac{2\kappa_s^2}{\kappa^3} + \frac{\kappa_{ss}}{\kappa^2}\right) \mathcal{D}_{\mathsf{s}} \mathsf{E}^{\tau}(L) \\ &\quad + \frac{2\kappa_s}{\kappa^2} \mathcal{D}_{\mathsf{s}}^2 \mathsf{E}^{\tau}(L) - \frac{1}{\kappa} \mathcal{D}_{\mathsf{s}}^3 \mathsf{E}^{\tau}(L) + \tau_{\mathsf{s}} \mathsf{E}^{\kappa}(L) + 2\tau \mathcal{D}_{\mathsf{s}} \mathsf{E}^{\kappa}(L) = 0, \end{split}$$

and the coefficients of I_{tJ}^{α} in the boundary terms, C^{α} .

To obtain the invariantised Euler-Lagrange equations and the p-tuple P, we had to use the following syzygies

$$\begin{split} \mathcal{D}_t \eta &= \mathcal{D}_s I_2^x - \kappa I_2^y, \\ \mathcal{D}_t \kappa &= \mathcal{D}_s^2 I_2^y - 2\tau \mathcal{D}_s I_2^z + \kappa_s I_2^x + (\kappa^2 - \tau^2) I_2^y - \tau_s I_2^z, \\ \mathcal{D}_t \tau &= \frac{1}{\kappa} \mathcal{D}_s^3 I_2^z + \frac{2\tau}{\kappa} \mathcal{D}_s^2 I_2^y - \frac{\kappa_s}{\kappa^2} \mathcal{D}_s^2 I_2^z + 2\tau \mathcal{D}_s I_2^x + \left(\frac{3\tau_s}{\kappa} - \frac{2\kappa_s \tau}{\kappa^2}\right) \mathcal{D}_s I_2^y \\ &+ \left(\kappa - \frac{\tau^2}{\kappa}\right) \mathcal{D}_s I_2^z + \tau_s I_2^x + \left(\frac{\tau_{ss}}{\kappa} - \frac{\tau_s \kappa_s}{\kappa^2}\right) I_2^y + \left(\frac{\kappa_s \tau^2}{\kappa^2} - \frac{2\tau \tau_s}{\kappa}\right) I_2^z, \end{split}$$

and the differential formulae

$$\begin{split} \mathcal{D}_t \kappa &= -2\kappa I_{12}^{\mathsf{x}} = I_{112}^{\mathsf{y}}, \\ \mathcal{D}_t \tau &= \tau I_{12}^{\mathsf{x}} - \frac{\tau}{\kappa} I_{112}^{\mathsf{y}} + \kappa I_{12}^{\mathsf{z}} - \frac{\kappa_s}{\kappa^2} I_{112}^{\mathsf{z}} + \frac{1}{\kappa} I_{1112}^{\mathsf{z}}, \\ \mathcal{D}_s I_2^{\mathsf{y}} &= -\kappa I_2^{\mathsf{x}} + I_{12}^{\mathsf{y}} + \tau I_2^{\mathsf{z}}, \\ \mathcal{D}_s I_2^{\mathsf{z}} &= -\tau I_2^{\mathsf{y}} + I_{12}^{\mathsf{z}}, \\ \mathcal{D}_s^{\mathsf{z}} I_2^{\mathsf{z}} &= \tau \kappa I_2^{\mathsf{x}} - \tau_s I_2^{\mathsf{y}} - 2\tau I_{12}^{\mathsf{y}} - \tau^2 I_2^{\mathsf{z}} + I_{112}^{\mathsf{z}}. \end{split}$$

Multiplying the vectors \mathcal{C}^{α} for $\alpha=1,...,3$, by the respective matrices of invariantised infinitesimals, $\Omega^{\alpha}(I)$ and then adding them up gives us the vector of invariants

$$\boldsymbol{v}(l) = \begin{pmatrix} -\kappa \mathsf{E}^{\kappa}(L) - \tau \mathsf{E}^{\tau}(L) + 2L - \kappa_{s} \frac{\partial L}{\partial \kappa_{s}} - \tau_{s} \frac{\partial L}{\partial \tau_{s}} \\ -\mathcal{D}_{s} \mathsf{E}^{\kappa}(L) - \frac{\tau}{\kappa} \mathcal{D}_{s} \mathsf{E}^{\tau}(L) \\ \kappa \mathsf{E}^{\tau}(L) + \frac{1}{\kappa} \mathcal{D}_{s}^{2} \mathsf{E}^{\tau}(L) - \tau \mathsf{E}^{\kappa}(L) - \frac{\kappa_{s}}{\kappa^{2}} \mathcal{D}_{s} \mathsf{E}^{\tau}(L) \\ \mathsf{E}^{\tau}(L) \\ -\frac{1}{\kappa} \mathcal{D}_{s} \mathsf{E}^{\tau}(L) \\ \mathsf{E}^{\kappa}(L) \end{pmatrix}$$

The conservation laws are $\mathcal{A}d_{\rho}^{-1}v(I)=c$, where $c=(c_1,c_2)^T$ is the constant vector with $c_1=(c_1,c_2,c_3)^T$ and $c_2=(c_4,c_5,c_6)^T$.

Using the conservation laws $\mathcal{A}d(\rho)^{-1}v(I)=\mathbf{c}$ we get a first integral of the Euler-Lagrange equations

$$\begin{split} &\left(-\tau\mathsf{E}^{\tau}(\mathit{L})-\kappa\mathsf{E}^{\kappa}(\mathit{L})+2\mathit{L}-\frac{\partial \mathit{L}}{\partial \kappa_{s}}\kappa_{s}-\frac{\partial \mathit{L}}{\partial \tau_{s}}\tau_{s}\right)^{2}+\left(-\mathcal{D}_{s}\mathsf{E}^{\kappa}(\mathit{L})-\frac{\tau}{\kappa}\mathcal{D}_{s}\mathsf{E}^{\tau}(\mathit{L})\right)^{2}\\ &+\left(\frac{1}{\kappa}\mathcal{D}_{s}^{2}\mathsf{E}^{\tau}(\mathit{L})-\frac{\kappa_{s}}{\kappa^{2}}\mathcal{D}_{s}\mathsf{E}^{\tau}(\mathit{L})+\kappa\mathsf{E}^{\tau}(\mathit{L})-\tau\mathsf{E}^{\kappa}(\mathit{L})\right)^{2}=c_{1}^{2}+c_{2}^{3}+c_{3}^{2}. \end{split}$$

How are these conservation laws going to help reduce the integration problem?

First we simplify the conservation laws in two steps.

First step

Apply an element of SE(3), say $\mathcal{A}d(g)^{-1}$, to both sides of $\mathcal{A}d_{\rho}(z)^{-1}v(I)=c$ such that it sends c_1 and c_2 to the z-axis.

But how does Ad(g) act on the vector \mathbf{c} ?

$$\mathcal{A}d(g)\mathbf{c} = \left(\begin{array}{cc} R & \mathbf{0} \\ DTR & DRD \end{array}\right) \left(\begin{array}{c} \mathbf{c_1} \\ \mathbf{c_2} \end{array}\right)$$

The Adjoint representation of G does not act freely on the constant vector \mathbf{c} , since it preserves the length of $\mathbf{c_1}$ and the quantity $\mathbf{c_1}^T D \mathbf{c_2}$, as shown below

$$DTR\mathbf{c}_{1} + DRD\mathbf{c}_{2} = \widetilde{\mathbf{c}_{2}}$$

$$T\widetilde{\mathbf{c}_{1}} + RD\mathbf{c}_{2} = D\widetilde{\mathbf{c}_{2}}$$

$$\mathbf{c}_{1}^{T}R^{T}T\widetilde{\mathbf{c}_{1}} + \mathbf{c}_{1}^{T}D\mathbf{c}_{2} = \mathbf{c}_{1}^{T}R^{T}D\widetilde{\mathbf{c}_{2}}$$

$$\underbrace{\widetilde{\mathbf{c}_{1}}^{T}T\widetilde{\mathbf{c}_{1}}}_{=0} + \mathbf{c}_{1}^{T}D\mathbf{c}_{2} = \widetilde{\mathbf{c}_{1}}^{T}D\widetilde{\mathbf{c}_{2}}$$

So let $\mathcal{A}d(g)^{-1}$ act on **c** to obtain

$$C = \left(0, 0, |c_1|, 0, 0, \frac{c_1^T D c_2}{|c_1|}\right)^T$$

generic case, where $c_1 \neq 0$. Hence,

$$\mathcal{A}d_{\rho}(\widetilde{z})^{-1}v(I) = \mathbf{C},\tag{2}$$

by the equivariance of the right moving frame, i.e.

$$\mathcal{A}d_{\rho}(g\cdot z)^{-1}=\mathcal{A}d(g)^{-1}\mathcal{A}d_{\rho}(z)^{-1}.$$

Second step

Next, applying $\mathcal{A}d_{\rho}(\widetilde{z})$ to both sides of (2) gives us

$$\mathcal{A}d_{\rho}(\widetilde{z})\mathbf{C} = \upsilon(I),$$

more precisely

$$|\mathbf{c}_1|\widetilde{z_s} = v^{(1)}(I),\tag{3}$$

$$\frac{|\mathbf{c}_1|}{\kappa} \widetilde{\mathbf{z}_{ss}} = v^{(2)}(I), \tag{4}$$

$$\frac{|\mathbf{c}_1|}{\kappa} (\widetilde{x_s} \widetilde{y_{ss}} - \widetilde{y_s} \widetilde{x_{ss}}) = v^{(3)}(I), \tag{5}$$

$$|\mathbf{c}_1|(\widetilde{x}\widetilde{y_s} - \widetilde{y}\widetilde{x_s}) + \frac{\mathbf{c}_1^T D \mathbf{c}_2}{|\mathbf{c}_1|} \widetilde{z_s} = v^{(4)}(I), \tag{6}$$

$$\frac{|\mathbf{c}_1|}{\kappa} (\widetilde{\mathbf{x}_{ss}} \widetilde{\mathbf{y}} - \widetilde{\mathbf{y}_{ss}} \widetilde{\mathbf{x}}) - \frac{\mathbf{c}_1^T D \mathbf{c}_2}{\kappa |\mathbf{c}_1|} \widetilde{\mathbf{z}_{ss}} = v^{(5)}(I), \tag{7}$$

$$\frac{|\mathbf{c}_{1}|}{\kappa} \left(\widetilde{x} \left(\widetilde{z_{s}} \widetilde{x_{ss}} - \widetilde{x_{s}} \widetilde{z_{ss}} \right) - \widetilde{y} \left(\widetilde{y_{s}} \widetilde{z_{ss}} - \widetilde{z_{s}} \widetilde{y_{ss}} \right) \right) + \frac{\mathbf{c}_{1}^{T} D \mathbf{c}_{2}}{\kappa |\mathbf{c}_{1}|} \left(\widetilde{x_{s}} \widetilde{y_{ss}} - \widetilde{y_{s}} \widetilde{x_{ss}} \right) = v^{(6)}(I), (8)$$

where we have used $v^{(j)}(I)$ to denote the j-th component of v(I).

Once we have solved for κ and τ , we can solve this overdetermined system for the original variables.

So starting with Equation (3),

$$\widetilde{z_s} = \frac{1}{|\mathbf{c_1}|} v^{(1)}(I),$$

we obtain that

$$\widetilde{z(s)} = \frac{1}{|c_1|} \int v^{(1)}(I) ds.$$

Next, multiplying Equation (5) by $-\frac{c_1^TDc_2}{|c_1|^2}$ and adding it to Equation (8) gives

$$\frac{|\mathbf{c}_1|}{\kappa} (\widetilde{\mathbf{x}} (\widetilde{\mathbf{z}_s} \widetilde{\mathbf{x}_{ss}} - \widetilde{\mathbf{x}_s} \widetilde{\mathbf{z}_{ss}}) - \widetilde{\mathbf{y}} (\widetilde{\mathbf{y}_s} \widetilde{\mathbf{z}_{ss}} - \widetilde{\mathbf{z}_s} \widetilde{\mathbf{y}_{ss}})) = v^{(6)}(I) - \frac{\mathbf{c_1}^T D \mathbf{c_2}}{|\mathbf{c_1}|^2} v^{(3)}(I),$$

which simplifies to

$$|\mathbf{c}_1| \left(\widetilde{z_s} \left(\frac{1}{2} \mathcal{D}_s^2 (\widetilde{\mathbf{x}} \cdot \widetilde{\mathbf{x}}) - 1 \right) - \frac{1}{2} \widetilde{z_{ss}} \mathcal{D}_s (\widetilde{\mathbf{x}} \cdot \widetilde{\mathbf{x}}) \right) = \kappa v^{(6)}(I) - \kappa \frac{\mathbf{c_1}^T D \mathbf{c_2}}{|\mathbf{c_1}|^2} v^{(3)}(I),$$

where $\frac{1}{2}\mathcal{D}_s^2(\widetilde{\mathbf{x}}\cdot\widetilde{\mathbf{x}})-1=\widetilde{\mathbf{x}}\cdot\widetilde{\mathbf{x_{ss}}}$ and $\frac{1}{2}\mathcal{D}_s(\widetilde{\mathbf{x}}\cdot\widetilde{\mathbf{x}})=\widetilde{\mathbf{x}}\cdot\widetilde{\mathbf{x_{s}}}$. Now let $\mathcal{D}_s(\widetilde{\mathbf{x}}\cdot\widetilde{\mathbf{x}})=h(s)$ and substitute $\widetilde{z_s}$ and $\widetilde{z_{ss}}$ respectively by $\frac{1}{|\mathbf{c}_1|}v^{(1)}(I)$ and $\frac{1}{|\mathbf{c}_1|}\mathcal{D}_s v^{(1)}(I)$. Rearranging we obtain the following equation linear for h

$$\mathcal{D}_{s}h - \frac{\mathcal{D}_{s}v^{(1)}(I)}{v^{(1)}(I)}h = 2\kappa \left(v^{(6)}(I) - \frac{{c_{1}}^{T}Dc_{2}}{|c_{1}|^{2}}v^{(3)}(I)\right) / v^{(1)}(I) + 2.$$

Solving for h gives us

$$h(s) = v^{(1)}(I) \int \frac{1}{v^{(1)}(I)} \left(2\kappa \left(v^{(6)}(I) - \frac{{\mathbf{c_1}}^T D \mathbf{c_2}}{|\mathbf{c_1}|^2} v^{(3)}(I) \right) \middle/ v^{(1)}(I) + 2 \right) \mathrm{d}s.$$

Now we know that

$$\mathcal{D}_{\mathfrak{s}}(\widetilde{\mathbf{x}}\cdot\widetilde{\mathbf{x}}) = v^{(1)}(I) \int \frac{1}{v^{(1)}(I)} \left(2\kappa \left(v^{(6)}(I) - \frac{\mathbf{c_1}^T D \mathbf{c_2}}{|\mathbf{c_1}|^2} v^{(3)}(I) \right) \middle/ v^{(1)}(I) + 2 \right) \mathrm{d}\mathbf{s}. \tag{9}$$

Using cylindrical coordinates

$$\widetilde{x(s)} = r(s)\cos\theta(s), \qquad \widetilde{y(s)} = r(s)\sin\theta(s), \qquad \widetilde{z(s)} = \widetilde{z(s)},$$

Equation (9) gives us that

$$r(s)^2 = \int \left[\upsilon^{(1)}(I) \int \frac{1}{\upsilon^{(1)}(I)} \left(2\kappa \left(\upsilon^{(6)}(I) - \frac{{c_1}^T D c_2}{|c_1|^2} \upsilon^{(3)}(I) \right) \middle/ \upsilon^{(1)}(I) + 2 \right) \mathrm{d}s \right] \mathrm{d}s - \left(\int \frac{\upsilon^{(1)}(I)}{|c_1|} \mathrm{d}s \right)^2.$$

Finally using cylindrical coordinates to simplify Equation (6)

$$|\mathbf{c}_1|(\widetilde{x}\widetilde{y_s}-\widetilde{y}\widetilde{x_s})+\frac{\mathbf{c_1}^T D \mathbf{c_2}}{|\mathbf{c_1}|}\widetilde{z_s}=v^{(4)}(I)$$

we obtain

$$r(s)^2 \theta_s = \frac{1}{|\mathbf{c_1}|} \left(v^{(4)}(I) - \frac{\mathbf{c_1}^T D \mathbf{c_2}}{|\mathbf{c_1}|^2} v^{(1)}(I) \right).$$

Hence,

$$\theta(s) = \int \frac{1}{r(s)^2 |\mathbf{c_1}|} \left(v^{(4)}(I) - \frac{\mathbf{c_1}^T D \mathbf{c_2}}{|\mathbf{c_1}|^2} v^{(1)}(I) \right) ds.$$

To recover x, y and z, we act on \widetilde{x} , \widetilde{y} and \widetilde{z} as follows

$$\widetilde{\mathbf{x}} \mapsto \mathbf{x} = R\widetilde{\mathbf{x}} + \mathbf{a},$$
 (10)

where R is a three-dimensional rotation and ${\bf a}$ is the translation vector with

$$\begin{split} \alpha &= -\tan^{-1}\left(\frac{\sqrt{|\mathbf{c}_1|^2\cos^2\beta - c_3^2}}{c_3}\right),\\ \gamma &= \tan^{-1}\left(\frac{c_2c_3\sin\beta + c_1\sqrt{|\mathbf{c}_1|^2\cos^2\beta - c_3^2}}{c_1c_3\sin\beta - c_2\sqrt{|\mathbf{c}_1|^2\cos^2\beta - c_3^2}}\right),\\ a &= \frac{c_1}{c_3}c + \frac{c_5|\mathbf{c}_1|^2 + c_2\mathbf{c}_1^TD\mathbf{c}_2}{c_3|\mathbf{c}_1|^2}, \quad b &= \frac{c_2}{c_3}c + \frac{c_4|\mathbf{c}_1|^2 - c_1\mathbf{c}_1^TD\mathbf{c}_2}{c_3|\mathbf{c}_1|^2}, \end{split}$$

and where β and c are free.

Although only four equations of the system have been used to solve x, y and z, we know that the remaining equations have been satisfied.

If we differentiate $\mathcal{A}d(\rho(z))^{-1}v(I)=\mathbf{c}$ with respect to s and rearrange we obtain

$$\mathcal{D}_{s}v(I) = \mathcal{D}_{s}\mathcal{A}d(\rho(z))\mathcal{A}d(\rho(z))^{-1}v(I),$$

which is equivalent to

$$\mathcal{D}_{s} \begin{pmatrix} v^{(1)}(I) \\ v^{(2)}(I) \\ v^{(3)}(I) \\ v^{(4)}(I) \\ v^{(5)}(I) \\ v^{(6)}(I) \end{pmatrix} = \begin{pmatrix} 0 & \kappa & 0 & 0 & 0 & 0 \\ -\kappa & 0 & \tau & 0 & 0 & 0 \\ 0 & -\tau & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & -\kappa & 0 \\ 0 & 0 & -1 & \kappa & 0 & -\tau \\ 0 & -1 & 0 & 0 & \tau & 0 \end{pmatrix} \begin{pmatrix} v^{(1)}(I) \\ v^{(2)}(I) \\ v^{(3)}(I) \\ v^{(4)}(I) \\ v^{(5)}(I) \\ v^{(6)}(I) \end{pmatrix}. \tag{11}$$

The system (11) is part of an elimination ideal as it only involves invariants.

Hence, Equations (4),

$$\frac{|\mathbf{c_1}|}{\kappa}\widetilde{z_{ss}}=v^{(2)}(1),$$

and (7),

$$\frac{|\mathbf{c_1}|}{\kappa} (\widetilde{\mathbf{x_{ss}}} \widetilde{\mathbf{y}} - \widetilde{\mathbf{y_{ss}}} \widetilde{\mathbf{x}}) - \frac{\mathbf{c_1}^T D \mathbf{c_2}}{\kappa |\mathbf{c_1}|} \widetilde{\mathbf{z_{ss}}} = v^{(5)}(I)$$

are automatically satisfied.

From the elimination ideal, we know that on solutions of the Euler-Lagrange equations the invariants $v^{(1)}(I)$ and $v^{(4)}(I)$ remain free.

- M. Fels and P. J. Olver, *Moving Coframes I*, Acta Appl. Math. 51:161-312, 1998.
- M. Fels and P. J. Olver, *Moving Coframes II*, Acta Appl. Math. **55**:127-208, 1999.
- T. M. N. Gonçalves and E. L. Mansfield, *On Moving Frames and Noether's Conservation Laws*, to appear in Studies in Appl. Math.
- I. A. Kogan and P. J. Olver, *Invariant Euler-Lagrange Equations* and the *Invariant Variational Bicomplex*, Acta Appl. Math. **76**:137–193, 2003.
- E. L. Mansfield, *A Practical Guide to the Invariant Calculus*. Cambridge: Cambridge University Press, 2010.