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Introduction

Noether’s First Theorem yields conservation laws for Lagrangians
with a variational symmetry group.

Recently, we proved that Noether's conservation laws can be
written as the divergence of the product of a moving frame and a
vector of invariants.

Interesting fact New format for Noether's conservation laws
reduces the integration problem.

How do these conservation laws simplify one-dimensional variational
problems which are invariant under the special Euclidean group
SE(3)?
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@ Moving frames!

@ Invariant calculus of variations?

@ Noether’s Theorem

@ Solution of SE(3) symmetric variational problems

M. Fels and P.J. Olver, Acta Appl. Math. 51 (1998) and 55 (1999)

2|.A. Kogan and P.J. Olver, Acta Appl. Math. 76 (2003)
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Here we will use the notion of Cartan’s moving frame as
reformulated by Fels and Olver.

Consider a group G acting on the n-th jet bundle J"(X x U),
whose action is free and regular.

K

O(z)

Figure: A local foliation with a transverse cross-section
pU—G
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Moving frame calculation

The cross-section K is the locus of W(z) = 0. To obtain the frame
p(z) we solve the system

Vi(g-z)=0, j=1,..,r=dim(G)

for the r independent parameters describing G, in other words we
solve the normalisation equations. By the IFT, a unique solution of
W(g-z) =0 yields

plg-2)=p()g ", o plg-2)=g (2,

i.e. p(z) is equivariant.
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Example Consider SL(2) acting on (x, t, u(x,t)) as follows

au-+b
cu+d’

a b
g—(c d>’ ad — bc = 1.

The induced action on uy, and similarly for other derivatives of v, is
defined to be

g x=x, g-t=t g-u=

where

_Olg-u) Uy
8 T 5g x)  (cutd)

by the chain rule.
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Let z = (u, uy, uxx) and take W(g -2z) =0 to be

g-u=0, g-ux=1g-ux=0.

Solving
1 b u Usx
a=—— =—— c=—1s.
\/Ux’ 1/UX’ 2U)?:/2
Invariants  The components of the cross-section /(z) = p(z) - z are
invariant.

In our running example

2
Uxxx 3 Uyx ue

u _ u __ _
I111 =8 Uxxx|frame = — 52 I2 =8 ut|frame = —
Ux 2 ug X

are the lowest order invariants. Let o = I{{;.

7/38



Various notations exist for the invariants in the literature

g * Uklframe = lg = t(uk) = Tuk.
Analogously, we have invariant differential operators

D

Di=—— .
’ [)(g'-xy) frame

In our running example

D D
Dx - E’ Dt - Ea
and
[Dx, D] = 0.
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All differential invariants are functions of the /¢ by the
Fels-Olver-Thomas Replacement Theorem:

If £(2) is invariant, then
f(z) = f(g-2) = f(p(z) - 2) = F(I(2))-

We know that
8—XjU% = uj,
but D;lIg # Io‘j; indeed

where I\/I,"‘q are the error terms.
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Example (cont.) We have two generators o = I{}; and I}/, and to
obtain /{};, we can use one of two paths.

o o o o
l hpn @ L
D
/2“_111“2 Mo i @
1D
0 1 0 /1"11 o o

Syzygy between the two generators

Dio = (D2 + 20Dy + o) Y.
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Invariant calculus of variations

Recall, we want to use the invariantised versions of the
Euler-Lagrange equations and Noether's conservation laws to find a
solution for symmetric variational problems.

Recall how we calculate the Euler-Lagrange equations for
one-dimensional Lagrangians

0 = %EZOZ[U—&—av]
d b
= % / L(x,u+ev, ux + Vi, Uxx + EVix, - .. ) dx

oL
< +WXXVXX‘|'...) dX

d aL d® aL )y
anUx dxzauxx

d (E)L oL (d 8L) )]
+— v + vy — | — v+... dx
dx

Oux OUxx dx Ouxx

/b E(L)vdx + {gu"x r

11/38



Invariant calculus of variations

To get the invariantised Euler-Lagrange equations and Noether’s
conservation laws, we introduce a dummy invariant variable ¢ and
set u = u(x,t). Then

d

D
= L +ev] = —

L[u*]
=0 Dt

oy
ug=v

yield the same symbolic result.

Example (cont.) Consider the one-dimensional Lagrangian with
finite number of arguments

Llu] = /L((T,(TX,(TXX,...)dX.

Introduce the dummy variable t to effect the variation. This gives a
new invariant Ij = u;/uy, with syzygy

Dio = (D3 + 20Dy + o) I¥ = HI.
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Invariant calculus of variations

Hence,
D, / L(o,0x, Oxxy - - . ) dx

(% i) D

0o  Oox
r/oL oL, oL .
_/<%_DX80X+DX80_XX+.. >H(I2)dx
E“(L)
oL oL oL b

+ [EDtU + —aUxx DxD:o — Dx —aUxx Dio+--- :| .
= /H* (E°(L)) 1 dx
n [E”(L)Dilz” — DE° (L)Dy I + D2E° (L)1 + 20E° (L)1

oL L oL b
+ 55 Di0 + 5 —DxDeo = Dy —Deo + - 1

where H* is the adjoint of . So E“(L) = H"E?(L) = 0.
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Noether's First Theorem

Noether's Theorem provides first integrals of the Euler-Lagrange
equations for one-dimensional variational problems that are
invariant under a Lie group.

As shown before, we obtain Noether's conservation laws by
carefully keeping track of the boundary terms.
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Noether's First Theorem

Example (cont.) The conservation laws associated to
[ L(o,0x,0xx, ...)dx are

ad + bc —2ab 2cd —2D4E“(L)
—ac a? - cE°(L)+D2E°(L) | =c.
bd —b2 d2 frame —2EU(L)
R(g)~!
Recall the frame is
1 u Uxx _
a:@, b:—\/u_x, C:2u)3(/27 ad — bc = 1.

R(gh) = R(g)R(h), so R(p(z)) is equivariant.

Which representation yields R(g)? How do we calculate the vector
of invariants?
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Noether's First Theorem

Adjoint representation of SL(2) with respect to the infinitesimal
vector fields
For

b
uzﬂ, where ad — bc = 1,
cu+d
the infinitesimal vector fields are
20y, O, _Uzau-
Let g € SL(2) act on
(2au + B — yu?)dy,

where «, S and ~ are constants.
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Noether's First Theorem

Thus,
g - (2au+ B —yu?)d,
(

2a(g - u) + B — (g - u)*)I(g.u)

— <2a?lﬂ'3 +8—7 <(ilﬂ'3) > (cu + d)?0,

ad + bc 2bd —2ac 2ud,
= (a B 7v) cd d>  —c? Oy )
—ab —b* & —u?0,

R(g)
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Noether's First Theorem

Recall the collection of boundary terms
E?(L)D21 — DyE’(L)Dyl + D2E (L)1 + 20E” (L)I§

oL oL oL
+ P+ LD Do — DyL—Dyo+ - = k,
0oy 00 xx O xx

where k is a constant. Substituting D2/¥, D, /¥ etc. in the above
by their differential formulae,

2iu __ qu u
Dby = Iy — oly,

u __ Jju
__ Ju u
Dio = l112 — ol

— u u
DyDio = h1112 — 40hyp — oxh,
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Noether's First Theorem

we obtain the conservation law in the form, linear in the )/},

D2E?(L) + oE°(L)
—'DXEU(L)—l----
(B Ky ) EO(L) +--- = k.

v~

Cu

Multiplying the vector C¥ by the matrix of invariantised
infinitesimals, 2“(/), we obtain the vector of invariants

_2DE7(L)
v(l)= | oE°(L) +D2E°(L)
—2E°(L)
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Noether's Theorem

Theorem Let [ L(k1, k2, ...)ds be invariant under G x M — M
with generating invariants x;, for j = 1,..., N, and let X; = x;, for
i=1,...,p. Introduce a dummy variable t to effect the variation
and suppose that

Dt/L(ml,mz, dx—/[Z”H* Ei( L)Ito‘—i—Div(P)]dx, (1)

where this defines a p-tuple P, whose components are of the form
Pi=> _15CH =Y Ad(p)mQ*(NmsCsi i=1,..,p
a,J a,m,J

and the vectors C* = (C¢;). Hence the the r conservation laws
obtained via Noether’s First Theorem can be written in the form

ZDX, (Adtvi(1)) =0,

where Adp_l is Ad(g) evaluated at the frame and

o(l) =32, Q()C
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Solution of SE(3) symmetric variational problems

Consider the SE(3) group action on the (x(s), y(s), z(s))-space,
parametrised by the Euclidean arc length, given by

x(s) = R} (x(s) — a),

where x(s) = (x(s),y(s),z(s))", R™! is a three-dimensional
rotation, and a = (a. b, ¢) a translation vector.

The normalisation equations that define the moving frame are

X=0,y=02=0, =0, Z =0, and zz = 0.
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Solution of SE(3) symmetric variational problems

Solving these normalisation equations gives us the frame in
parametric form

a=x, b=y, c =2z, 0 =arctan <£>, v = arctan | —= ,
Xs VXE+yé

Zss
« = arctan 5 5 5 |-
(Xs)/ss - )/sXss) VvV Xs +ys+zg

The infinitesimal vector fields generating SE(3) are
f10«, o =0,, f3=0;, {4 = y0, — z0,,

fs = x0, — z0x, f6 = x0,, — yOx.
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Solution of SE(3) symmetric variational problems

Letting g € SE(3) act on
f = pifi + pofo + p3fs + pafs + psfs + pefe gives us the
representation for g, Ad(g). Evaluating Ad(g) at the frame

provides
RT O3x3
Adt =
DTRT DR'D
where
Xss kl
Xs — —
" : 0 —z vy
RT = Vs Ys 12 , IT'=12z 0 —x|,
K K
-y x 0
Zss k3
ze — —
K K

and ki = YsZss — ZsYss, ko = zsXss — XsZss, k3 = XsYss — YsXss,
D = diag(1,—1,1), and Oszy3 is the zero matrix.
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Solution of SE(3) symmetric variational problems

Let L[k, 7] = [ [L(k, ks, T,Ts) — A(s)(n — 1)] ds be the
invariantised Lagrangian under the SE(3) group action, where x is

the Euclidean curvature, 7 is the torsion and n = /x2 + y2 + z2.
Differentiation and integration by parts of the invariantised

Lagrangian yields two invariantised Euler-Lagrange equations in two
unknowns, after using EX(L) = 0 to eliminate A

EY(L) = (k% — T2)E(L) + 27KET(L) — 2Lk + Kks He + KTs o=

+ (= — 255 ) D,ET(L) + D2E"(L) + £ D2E7(L) = 0,

K

R3

= rE O (0 F % ) me
+2%D2E7(L) — %DEET(L) + 7sE*(L) + 2rD;E(L) = 0,

and the coefficients of /7 in the boundary terms, C*.
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Solution of SE(3) symmetric variational problems

To obtain the invariantised Euler-Lagrange equations and the
p-tuple P, we had to use the following syzygies

Din = Dsly — /27

Dik = D — 21D, + ksl + (K2 — 7)1 — 113,

Dyt = D3/2+ Dzly ;D§I§+27DSI§+<3TS 2”‘ST)DIV
K K/

2 2
+ <,<¢_ T_) Dol + 7ol + (T_ ~EE R+ (“Z - 2”’) Iz,
K K K K

and the differential formulae

Dtl{ = —2[{’1)(2 = I1y127

Dt =7l — %Iivlz +klH — 1112 + = /11127
Dsly = —kly + 1, + 7'/2,
Dsly = =713 + Iy,
DS = 7kl — 7l — 271y — 721 + If,.
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Solution of SE(3) symmetric variational problems

Multiplying the vectors C® for oo = 1, ..., 3, by the respective
matrices of invariantised infinitesimals, Q%(/) and then adding
them up gives us the vector of invariants

—KEF(L) — TET(L) + 2L — ke ot — ms 5=
—DsE"(L) — IDE(L)
KET(L) + LD2E7(L) — TE"(L) — 5 DsE"(L)
E™(L)
—1DET(L)

E~(L)

The conservation laws are .Adp_lv(l) = ¢, where c = (c1,cp) " is
the constant vector with ¢y = (c1, 2, c3)" and ¢ = (¢4, ¢5,¢5) "
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Solution of SE(3) symmetric variational problems

Using the conservation laws Ad(p)~tv(/) = c we get a first
integral of the Euler-Lagrange equations

oL oL 2

o s — 73—
OKs OTs

<7TE"(L) — KE®(L) + 2L — Ts>2 + <7D5E"’(L) . %DSET(LD

Ks

2
+ <1D§ET(L) — —=D,E"(L) + kET(L) — TE"(L)> =c+c+ck.
K K
How are these conservation laws going to help reduce the
integration problem?
First we simplify the conservation laws in two steps.

First step
Apply an element of SE(3), say Ad(g)~!, to both sides of
Ad,(z) 1v(/) = c such that it sends c1 and c3 to the z-axis.
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Solution of SE(3) symmetric variational problems

But how does .Ad(g) act on the vector c?

Ad(g)c = < DI;R DgD > ( 2; >

The Adjoint representation of G does not act freely on the constant
vector c, since it preserves the length of c; and the quantity
c1” Dcy, as shown below

DTRcy + DRDcy = €3
TE + RDcy = Déy
ci'RTTéi+c1"Dey =c1"RTDG
€17 T€1+c1' Doy = €17 D6y
N——

=0
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Solution of SE(3) symmetric variational problems

So let Ad(g)~! act on c to obtain

TD T
C=— <O,O,|c1|,0,O,M> ,
c1]
generic case, where c; # 0. Hence,
Ady@)o(l) = C, 2)

by the equivariance of the right moving frame, i.e.

Ad,(g -2)7! = Ad(g) 1 Ad,(z) L.
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Solution of SE(3) symmetric variational problems

Second step
Next, applying Ad,(z) to both sides of (2) gives us

Ad,B)C = (1),

more precisely

1|z = (1), 3)
U] (4)
i - o 3
T(Xsyss - ysXss) =v (I)a (5)
T
— -~ c1' Dco -
|C1|(X)/s - st) + 1|C1| 2Zs = U(4)(I)7 (6)
|C1| ¢1'Dea (5)
Xss ss X ) — Zss = U I bl 7
— (Xesy — YsX) ] (1 ()
C1 DCz ~—

C1 — ~f o~~~ —~— ~
| | (X(ZsXss - stss) - _y(_)/szss - Zs_)/ss)) + | (Xs_)/ss _)/sXss) - U(e)(l)7 (8)

K|c1

where we have used vU)(/) to denote the j-th component of v(/).
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Solution of SE(3) symmetric variational problems

Once we have solved for k and 7, we can solve this overdetermined
system for the original variables.

So starting with Equation (3),

1
7 — — M)
Zs = ‘cl‘ (I)a

/ Ids.
T

we obtain that
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Solution of SE(3) symmetric variational problems

Next, multiplying Equation (5) by —a’Da 54 adding it to

multiplyi ar
Equation (8) gives
_— — o C1TDC2 3)

le1] =~ = S(oo— o= (6)
— sXss — XsZss ) — sZss — ZsYss - /
L (3(57% — 5.5) ~ 78 — 3)) = vO(1) - S

(),
which simplifies to

~ (1 ~ - 1 - - c1’ Dca
|ca] (Zs (EDf(x -X) — 1> - EZSSDS(X . x)> = k@) =k B v3(1),

where 3D2(X - X) — 1 =X - Xgs and 3Ds(X - X) = X - Xs. Now let
Ds(x - x) = h(s) and substitute z; and zg respectively by
|(:1_1|U(1)(I) and |c1—1|DSU(1)(I). Rearranging we obtain the following
equation linear for h

Do (1) c1’ Dca
) —_— h= 2k 0v®) - @ M1y +2.
= 2 (090) = SEER)) [o) +
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Solution of SE(3) symmetric variational problems

Solving for h gives us

h(s) = v®(1) / ﬁ(/) <2n <u<6>(/) - %u“)(/)) /v(l)(l) + 2) ds.

Now we know that

Dy(XX) = u“)(/)/v(%(l) <2n <U<6>(/) - °‘|;’|)2°2U(3>(/)) /u“)(/) + 2) Ei:)

Using cylindrical coordinates

x(s) = r(s)cosO(s),  y(s)=r(s)sinf(s),  z(s) = z(s),

Equation (9) gives us that

) ) T (1) 2
v = [ o®y [ =2 (20 (v© @) - L2 0 o) slas— [ [0y,
(s) 7/ [ (I)/ 00 (2 ( n B (/))/, (n +2> d ] d ( ol d .
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Solution of SE(3) symmetric variational problems

Finally using cylindrical coordinates to simplify Equation (6)

.
lex| (37 — y%) + %~ 9
we obtain
1 c1'Dc
205 = @y €1 Dez )
b= 1eg / ).
r(S) s ‘Cl‘ (U () |c1|2 v ())
Hence,
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Solution of SE(3) symmetric variational problems

To recover x, y and z, we act on X, y and Zz as follows

X — x = Rx + a, (10)
where R is a three-dimensional rotation and a is the translation
vector with

_ c1|2cos2 8 — ¢c2
o tan 1<\/| EEEETAY
C3
_1 [ c2casin B+ ciy/|c1|? cos? B — ¢2
v = tan - s
ciczsin B — c2v/|c1f? cos? B — ¢2
2 T 2 T
C: cs|c cc1’ Dce c clc1]® — ac1’ Dc
PR slc1]” + 221 IR Y a|c1] 121 2
C3 C3|C1| C3 C3|C1|

and where 3 and c are free.
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Solution of SE(3) symmetric variational problems

Although only four equations of the system have been used to solve
x, y and z, we know that the remaining equations have been
satisfied.

If we differentiate Ad(p(z))v(/) = c with respect to s and
rearrange we obtain

Dov(l) = Dy Ad(p(2))Ad(p(2)) (1),

which is equivalent to

v D(1) 0 x 0 0 0 0 o M(1)
v® (1) % 0 7 0 0 0 (1)
@)1 0 -7 0 0 0 0 @)1
v T v
Pl vy [T 0 0 0 0o —x o0 vy |- Y
vO(1) 0 0 -1 x 0 -7 o®(1)
0©(1) o -1 0 0 7 0 0®(1)

36 /38



Solution of SE(3) symmetric variational problems

The system (11) is part of an elimination ideal as it only involves
invariants.

Hence, Equations (4),

c1| —
Gz =0,
and (7),
cil, -~ .. c1"Dcy _
‘—Kﬂ(xssy — YesX) — ﬁzss = v(5)(l)

are automatically satisfied.

From the elimination ideal, we know that on solutions of the
Euler-Lagrange equations the invariants v(1)(/) and v(*)(/) remain
free.
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