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Introduction Extension
Let p: M — Q be a submersion and let Z C Q*(Q) be an EDS on M.

An EDS &£ C Q*(M) on M with p* (Z) C £ is an extension of 7.
The EDS € is an integrable extension if,

@ There exists a Pfaffian system J on M such that
® &= (p*(Z) + S(J))alg and

® J is transverse
ann(J) Nker (px) =0 and

@® rankJ =dimN —dim M
If T =< 0" >, then & =< p*(0'), (? >aig Where

d¢®=0 mod {p*(6),¢}

o Property 3 implies given an immersed integral manifold o : S — M for &,
then poo : S — Q@ is an immersed integral manifold of Z.

e Property 2 implies given a solution o : S — Q for Z, solutions to £ can be
obtained from o using the Frobenius theorem.



Introduction Reduction
Let p: M — @ be a smooth submersion and Z an EDS on M.

The reduced differential system Z/p on Q is
I/p={0€Q*(Q)|p"(0) €L}

If G is a Lie group which acts regularly on M with q¢ : M — M/G and by
symmetries g*Z = T then

7/G ={0cQ(M/G)|ag(d) € T}.

The basic idea for integral manifolds:
e If s: N — M is an integral manifold for Z then 5 = qg o s is an integral
manifold of Z/G, and
o If 5: N — M is ANY lift of 5 = q¢ o s then s(x) = y(x) - §(x)
where v : N — G satisfies a differential equation on G (Reconstruction)
N ) : (Z,M)

qc

N —ueee (Z/G, M/G) .




Computing Z/G
Let ' be the Lie algebra of infinitesimal generator.
Let ¢ = kerqg. be point-wise span of elements in I'g (Vertical space)

Let Zgp ={ 0 €Z | X—0=0forall X e}

Theorem: The subset Z, is G-invariant and
(Zsp) = ( ag(Z/G)).

Proof: Clearly we have
Isb/GCI/G and p*(I/G)CISb

therefore Z/G = 74,/ G.

Note that I are a subset of the Cauchy characteristics for (Zgp). If G has
connected orbits then Z/G is Cauchy reduction of (Zg) by Fg.

Theorem 2: If 8 € Ty, and o : M/G — M is a local cross-section then
c*0eI/G.



Example 1: J3(R,R) = (X, v, Vi, Vis Viorx)
T = (dv — vedX, dvy — Vix, QVix — Vix X, AV A dX)
F¢ =span{ X1 = d,, Xo = pr(vd,), X3 = pr(v?9,)}
Compute semi-basic one-forms 6(X;) = 0 for all X; € T
det(0'(X;)) = 2u3
Therefore on M = {u, # 0},
I3 = {0}

We have 72 = Q?(M), and the differential invariant is the Schwartzian

2
Vix 3V,
B= — —% and

Vi v2

72

S

Therefore on M/T = (x, k)
Z/T = span{dx A dx}

The reconstruction problem is finding a curve in RP* with prescribed
Schwartzian x = f(x).



Pfaffian Systems and Transversality
From now on Z is Pfaffian system: | C T*M, and Z = (S(/))dif
The group acts transversally to Z (or 1) if

ann(/)NTg=0
For simplicity assume G acts freely: rank kerqg, = dim G
Quotients/Solutions behave well for Transverse actions.

@ If s: N— Mis an (immersed) integral manifold of Z then
qcos: N — M/G is an immersed integral manifold of Z/G and the
symmetry group of s(N) C M is at most discrete

® rank s, = rank/ —rankl¢ =rank/ —dim G
@ There exists J C T*M; rank J = rank ker q¢; transverse to q¢ so that

Z=38(J)+as(Z/G).

That is Z is an integrable extension of Z/G.



Rank | = Dim G
[i(] G acts freely on M (qg : M — M/G is a left PFB)
[ii] Pfaffian system | C T*M, G is symmetry.
[iii] rank | = dim G,
[iv] G acts transversally ann(/)NTg = 0.
This implies
[ii], [i] rank ann(/) = dim M — dim G = dim M/G
[iv] ann(/) is horizontal
[ii] grann(/) =1/ forallge G

Therefore ann(/) is a connection on M — M/G
7Z=(w,Q); I/G=(R)

where w is the connection form, R the curvature tensor.
Finding integral curves for Z are horizontal lifts of curves 5: R — M/G:

S:R—= M, s(t) =~(t)-5(t); v:R—= G

dvy ds :
e _LV*W(E) ( Lie type ).

Example 1 was of this type: G = SL(2,R).



. — 3,2 =1 3 -5
Example ODE: u, = 3u  u, - + ug, uy

D
3ug,

X

3
M = (x, u, ux, Uxx) ; | = span{du—u,dx, du,—u,dx, duxx—< + UXBX) dx}
uX

is invariant under the solvable G = (a, b, c)
X' =x+atcu =u+b, v, =14+ cu)  u, v =1+ cu) 3.
Choose cross-section 5(t) = (0,0, 1, t) of (x, u, Uy, Ux); Write
() = 1(8)-8(t) = (x = a(t), u(t) = b(t), i = (1+€(£), o = (1+c(£) >t
The equations of Lie type for v : R — G are
a=(1+c)t 3 b=t3 e¢=—t2

Integrate by quadratures (G is solvable).

-1 C T*M is co-dimension 1 for an n-th order ODE

- G an n-dimensional symmetry group acting freely and transversally

- The connection ann(/) is one-dimensional (flat).

- Choose a cross-section 5 : R — M and make horizontal s = 7(t) - 5(t)
- Solve equation of Lie type for y(t).



Free and Transverse: dim G < rank/

— Let Z;, 1 < i < r be a basis of right invariant vector fields, and let 7/ be the
dual right invariant one-forms to Z; on G. Let [Z;, Z;] = C,-j-‘Zk.

— Let I'g = span{Xi, Xz, ... X, } corresponding to the choice of Z;.

Theorem About each point x € M there exists a G-invariant open set U and
a co-frame {0',77%,6* } on U where

1<i<dimG, 1<a<rank/—dimG, 1<a<dmM/G

such that
[i1 Z = (0", 717)aitr:
[ii] the forms 772, G are G basic;
[iii] the forms 6" satisfy 6'(X;) = é7,
[iv] the structure equations are

dg® =0, di? =0mod {&%, 77} and

1
do’ = A'ﬁo AP —|—B’77 /\0’6—7 NS

[v] The reduced EDS is Z/G|g; = (77°, dii®, Al,5 5 A7)



1= <9i7ﬁa, dﬁaa’agﬁ %N 5—6>
Z/G = (i, di?, AL ;5% N 5P)
. 1. _. .
d' = —5 G0/ ANOK+ ALz 5% NGP + Blgi® AP
Remark: If dim G = rank / then no 77 terms.
Corollary 1: Z = {6} + q(Z/G) and is an integrable extension of Z/G.

Corollary 2: Let s: N — M be an integral manifold of Z, then s = qg o s is an
integral manifold of Z/G. If § a lift of 5. There exists a unique function

v : N — G such that
5(x) = 7(x) - 3(x)
and + satisfies an equation of generalized Lie type.

Corollary 3: Let s1,5 : N — M be integral manifolds. If there exists g € G
such that s, = g o 51 then qg 0 s, = qg o s;. The converse holds locally.



Proof

The forms 777 are G-invariant sections of /g, which has rank rank / — dim G.
The closed forms % are a complement to 772 so that T*(M/G) = spann?, c®.
To see where the forms 6/ come from, choose a local trivialization with open
set U and map (q¢,9¢) : U — U x G

Let w' = ¢*(7'), where 7' are the right-invariant forms on G defined above
and dual to Z;. Note that w'(X;) = &, and

Now by transversality there exists smooth function S!, T/ on U so that
w'+ Sip? + T\3* € I,
Since 7 € T let ' _ _
0 =wi+ Tig?,

At this point with {6',7°,5% }, parts [i], [iil, [iii] of the theorem hold.
By direct calculation using the Maurer-Cartan equations for w', the structure
equations for df' are obtained.



Example 3: J3(R, R2) with coordinates (t, x, y, X, y, X, j/)
I = (dx — xdt, dy — ydy, dx — xdt,dy — ydt, dx A dt, dj A dt)

The prolongation of SE(2)

X\ [ cosf —sinf xY. (2

y )\ sinf cos@ y b
is a symmetry group of | (by prolongation) which is free and transverse on
M = {(x,y) # (0,0)} € J>(R,R). (Free on J!, not transverse)
We have rank | = 4, therefore 1-semi-basic one form and
yy + xx
X2+ y?

Top= (i = Xdx+ydy—(5%+yy)dt, di, (yd)'e — xdy + (sdy — yd>'<)) Adt)

Let o : M — M be the cross-section,
(t,x=0,y =0,x =0,y = v, X = ki, j = ko).
The reduced EDS is (pullback semi-basic forms)
Z/G = (dv — kodt, dky A dt, dk; A dt)

Note : k; is the planar curvature.



A typical integral manifold for

T/G = (dv — kydt, dky A dt, dky A dt)

d
dt
An integral manifold in M which projects to 3 is of the form 1
s(t) = u(A(t), 0 0 3(t))
where o o5 is the lift and A: R — SE(2) satisfies
da db

5(t) = (t,v = v(t), ko = 2, ky = k(t)), v(t)#0.

P —v(t)sind(t) =0, e v(t) cos(t),
do K1)
dt ()

An equation of Lie type for a : R — se(2),

ki(t)
aft) =10, —v(t .
(0 = (0.-v(e). 25
1 Again finding an integral manifold to Z projecting to 5 is the prescribed
“curvature” problem




Example 1 Reuvisited:
My = J3(R, R) = (X, v, Vi, Vi, Vixx ), 1 = span{dv — v dx, dvy — Vi, dVax — Viex }
¢ = span{d,, pr(vd,), pr(v?d,)}
Take a second copy
M, = J3(R> R) = (v, w,wy, wyy, wyyy) , b =(0",6),07)
and on M; x Ms let
[y, = SPan{dy — Ow, pr(vd, + wdy), pr(vd, — w?d,)}
We compute (Z1 + Z,)/Tg,,, using the frame with 0] (X;) = 60°(Y;) = 6}:
T = {05 — 0, diy A dx, dir A dy}
The joint differential invariants are:

2v,w,, Vy

VXX
X:DX ===
(v + w)?’ “ (u) Vi v+ w

The quotient Z/T g, is the standard EDS for u,, = e,

u = log suy = Dy(u),...

(du— uedx — uydy, duy, — ugdx — edy, du, — e"dx — uy, dy, di Adx, dip A dy)
where u, = D, (u), u, = D,(u), etc. are coordinates on M/l ¢,iag. While

2 -1 2., =A 2
= Viex Ve — 3V Vi~ = Uxx — UL/2



Backlund Transformations: An Application

Two exterior differential systems (EDS) Z; € Q*(M;) and Z, C Q*(M,) on
manifolds M; and M, are related by a Backlund transformation, if there
exists an EDS B C Q*(N) on a manifold N which is simultaneously an
integrable extension for both Z; and Z,,

(B,N)

VN

(IlﬂMl IZaMQ) .

We call B the Backlund transformation.

1- Take a solution o : S — My of Z;.

2- Build a solution 6 : S — N of B by the Frobenius Theorem.
3- Project to a solution of Z5.

4- Go the other way starting with o : S — M.



Commutative Diagrams
Let G act on M as symmetries for Z,

Let H be a sub-group
Let p: M/H — M/G be the orbit map

p(Hx)=Gx xeM

Theorem : The orbit mapping p: M/H — M/G is a surjective submersion
which gives rise to the following commutative diagram of EDS

(M. 1)

(M/H,I/H) —F— (M/G.T/G)
If G is transverse to / then the diagram is a commutative diagram of

integrable extensions.

Note: Z/H/p = {0 € Q*(M/G) | p*0 € Z/H }. This is NOT symmetry
reduction.



Backlund Transformations by Symmetry Reduction
Using the previous diagram can construct Backlund transformations:
Let Z be a Pfaffian system on M
Let G; and G, be symmetry groups acting transversally to /.
Let H be a common subgroup of G; and G
Letqy: M — M/H, q¢ :M— M/G;, p;i:M/H— M/G,.

Theorem A: The diagram

(Z,M)
ac, s acs.
(Z/H,M/H)
P1 P2
(Z/G1,M/Gy) (Z/G2, M/G>)

is a commutative diagram of integrable extensions.



Therefore

(M/H,T/H)
4 p2\>
(M/G1,Z/Gh) (M/G2,7/G5)
is a Backlund transformation between Z/G; and Z/G,.

If the actions are free then the fibre dimensions are

dimG; —dimH and dim G, —dimH



Example: Backlund Transformation by Symmetry Reduction
M = 23(R,R) x /*(R,R) = Rlo(x, V) Vies Voo, Visoe, Yy W, Wy, Wy, Wy ).
T = (dv— vidx, dvy — Vex dX, dVix — dViex dX, dVie A dx,
dw — w,dy, dw, — w,, dy, dw,, — w,,, dy, dw,, A dy)
Symmetries of Z (infinitesimal)

X1 = 8\, — 6W,X2 = pr(v&, + W8W)7X3 = 8\/ + 8W,X4 = pl’(V26v — w28W)

Let
Fe, = {X1, X2, X3} = {0y, 0w, pr(vd, + wdy,)}
Fe, = {X1, X2, X4} = {0, — Oy, pr(vd, +wdy,), pr(v?d, — w?d,)}

My = I’Gl n er = {Xl,Xz} = {&, — 8W,pr(v6v + Waw)}

and construct the commutative diagram.
Note- The fibres of p, are dimension 1 (dim ¢, — dim H).



Example Part 3: The 'y = {Xi, X3} reduction
M = B(R,R) x J3(R,R) = R'™(x, v, Vi, Vi, Vicxxs ¥ W, Wy, Wy, Wy ).
T = (dv— vidx, dvy — Vex dX, dVix — dViex dX, dVie A dx,
dw — w,dy, dw, — w,, dy, dw,, — w,,, dy, dw,, A dy)

My {X1 =0, — 0w, Xo = pr(vO, + woy)}
Invariants V =log Y , W =log Wy
V+w v+ w

J3(R,R) x J3(R,R)

{X1, X2}

V,=—eV W, ="




Example Part 3: The g, = {X1, X2, X3} reduction

M = J3(R, R) X J3(R; R) = Rlo(Xa Vi, Vxy Vxs Vxxxs Yy Wy Wy, Wy, Wyyy)~
T = {dv— vidx, dvy — Vix dx, dVex — dViex dX, dViex A dX,
dw — w,dy, dw, — w,, dy, dw,, — w,, dy, dw,,, A dy)

rG1 {Xl :av_awaX2:pr(V8v+W6W)7X3:av+8w}

V. w,
Invariant — log vy — log wy, (Ty: V = | W= y
nvarian z = log vy — logwy, (TH Ogv+w Ogv+w)

(R.R) x P(R.R)]|




Example Part 3: The g, = {X1, X2, X4} reduction

M = J3(R, R) X J3(R; R) = Rlo(Xa Vi, Vxy Vxs Vxxxs Yy Wy Wy, Wy, Wyyy)~
T = {dv— vidx, dvy — Vix dx, dVex — dViex dX, dViex A dX,
dw — w,dy, dw, — w,, dy, dw,, — w,, dy, dw,,, A dy)

e {X1 =0y — 0w, Xo = pr(v, + wdy), Xa = pr(v?0, + w?d,,)}
Invariant u = log vy + log w, — 2log(v + w) + log 2

| (R.R) x J*(R.R)|




Example Part 3:

| (R.R) x J*(R.R)|

z=V-W, ze=V.-W,, z,=V,-W,
u=V+W+log2, uy=Vo+ W, u, =V, +W,

Writing Wy, = e~V and V, = e=" gives

z+u u—z
zZ—u=V2e 2 , z 4+u =-V2e 2




Example Part 3: Deprolongation

M = J3(R, R) x J3(R, R) = Rlo(x, V) Vies Voo, Visoe, Yy W, Wy, Wy, Wy ).
T = {(dv— vidx, dvy — Vix dx, dVex — dViex dX, dViex A dX,
dw — w,dy, dw, — w,, dy, dw,, — w,, dy, dw,,, A dy)
X1 = 8\, — 6W,X2 = pr(v@v + Waw)7X3 = 8V + 8W,X4 = pr(v28v — Wzaw)
M, ={X1,X, X3}, Tg, ={X1, X0, Xa}, Tw=Tg Nlg, = {X1, X2}

The quotients are:
T /T, are rank 3 Pfaffian systems on the 7 manifolds M/, (R'® — dim G,)
T/Ty is a rank 4 Pfaffian system on the 8 manifold M/I'y (R — dim H)

Our diagram can be de-prolonged.



Example Part 3: Deprolongation of Diagram

(Z,J°% x J3)
dre, qul are,

—p/(B’N)&)
(Z1, My) l

(Z2 ) M. 2)
de—prolong

de- prolongl / \

Zl7M1 I27]\42

lde prolong

— 7, be the Monge-Ampere representations on 2z, = 0 and uy, = e" on five
manifolds M,.

— B is a rank 2 Pfaffian system on a six manifold N.



Example Part 3:Deprolongation of (Z, J° x J3)

Instead of starting with Z on J3 x J3 start with J? x J?:

M = J(R,R) x J(R,R) = RS(X7 V, Vi, Vi, ¥, Wy Wy, Wy ).
Z = {(dv — vy dx, dvy — v dx, dvix A dx,
dw — wydy, dw, — w,, dy, dw,, A dy)

X1 =0, — 0w, Xo=pr(vd, + wdy), X3 =0, + On, Xa = pr(v28v — W28W)

(CL +Ca, T2 x J?)

jl = (Cl +C2)/fG1 j-2 = (Cl +Cg)/fg2 .



M = J3(R7 R) x J3(R, R) = Rlo(x, V, Vi, Vo, V3, Y, W, Wi, W, W3).
I = (dv—wvidx, dvi —vydx, dvy — dvsdx,dvs A dx
dw — wady, dwy — wa dy, dwy, — ws dy, dws A dx)
X1 =0y — 0w, Xo=pr(vd, +wdy,), X3 = pr(v?0, — w?d,), Xo = 0, + Oy,
Let
Mg, = {X1, X2, X3}

Mg = {X1, X2, Xa}
rH - rGl N er - {XlaXQ}

and construct the commutative diagram.

Note: Z/I ', was the Pfaffian system for Liouville's equation uy, = e".



Example Part H: The 'y = {Xi, X;} reduction

M = J3(R, R) x J3(R, R) = RlO(X, V, Vi, Vo, V3, Y, W, Wi, Wa, W3).
Z = {(dv—vidx, dvy — vadx, dv, — dvsdx, dvz A dx
dw — widy, dwy — wa dy, dwy — wsdy, dws A dy)

Xl = 8v - aWa X2 = pr(Vav + Waw)a X3 = Pr(Vzav - Wzaw)y X4 = a\/ + awa

| P(R.R) x J*(R,R)]

{X1, X2}

V,=—-eV W, = —ev‘

Z/Ty - Rank 4 Pfaffian system on an 8 manifold, M /Ty



Example Part G;: The I'g, = {Xi, X5, X4} reduction

M = J3(R, R) x J3(R, R) = RlO(X, V, Vi, Vo, V3, Y, W, Wi, Wa, W3).
Z = {(dv—vidx, dvy — vadx, dv, — dvs dx,
dw — wady, dwy — wa dy, dws, — w3 dy)

X1 =0, — 0w, Xo =pr(vd, +wiy), Xz= pr(v28V — wzaw), X4 = 0, + 0w,

| PR.R) x PR.R)|

Z/T g, - Rank 3 Pfaffian system on a 7-manifold, M/l g,



Example Part G;: The g, = {Xi, X5, X5} reduction

M = J3(R, R) x J3(R, R) = RlO(X, V, Vi, Vo, V3, Y, W, Wi, Wa, W3).
Z = {(dv—vidx, dvy — vadx, dv, — dvsdx, dvz A dx
dw — widy, dwy — wa dy, dwy — wsdy, dws A dy)

X1 =0, — 0w, Xo =pr(vd, +wiy), Xz= pr(v28V — wzaw), X4 = 0, + 0w,

| P(R.R) x J*(R.R)|

A— w
-Zzy =0 Ugy = e
I/F(;“2 —Rank 3 Pfaffian system on a 7-manifold.



Example Part 3:

| (R.R) x J*(R.R)|

Ugy = €

z=V-W, ze=V,-W,, 2z =V, -W,
u=V+W+log2, uy = Vo + W, u, =V, +W,

Writing W, = e~V and V, = e W gives

u—=z

Zy — Uy = \@exp#, zy +u, = —\f2exp



Example Part 3: Deprolongation

M = J3(R, R) x J3(R, R) = RlO(X, V, Vi, Vo, V3, Y, W, Wi, Wa, W3).
Z = {(dv—vidx, dv — vadx, dv, — dvs dx,
dw — wady, dwy — wa dy, dws, — w3 dy)

X1 =0, — 8W7 Xp = Pf(Vav + Waw)a X3 = Pf(Vzav - W28w); X4 =0, + 6W7
The quotients Z /I, are rank 3 Pfaffian systems on the seven manifolds

Fe = {X1,X2, X3}, Tg, ={X1, X0, Xa}, ThH=Tg Nl = {X1, X2}

Z/T¢, are rank 3 Pfaffian systems on the 7 manifolds M/T g,
Z/Ty is a rank 4 Pfaffian system on the 8 manifold M/T 4.
Our diagram can be de-prolonged.

Let Z, be the Monge-Ampere representations on zy, =0 and uy, = e".



Example Part 3:Deprolongation

(Z,J3 x J?)
chl qFHl CIFGZ
% (B,N)

(Il,Ml) (127M2)

|

de—prolong

/\

(Z1, My) (I, M)

de-prolongl lde-prolong

de-prolongation of (K1 + Kz, J2 x J3) gives,
(Cl +CQ,J2 X J2)

L= (1 +C)/Ta, T, = (C1 + C2)/Te, -



Monge-Ampeére Systems

Theorem - Let B be a (local) Bécklund transformation, with one-dimensional
fibers, between a hyperbolic Monge-Ampére system Z, and the Monge-Ampére
form of the wave equation Z, , = 0. Then Backlund transformation B can be
constructed locally as a group quotient in accordance with Theorem A in
essentially all but one case:

V31—uZ /1—u?

sinu

qu =

This equation is an SO(3) quotient, and since SO(3) has no two dimensional
subgroups, no such Backlund transformation exists.



