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Modeling biomembranes (red blood cells)

using

Cosserat Shell Theory
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What do we know about human blood?

mybloodyourblood.org/hs-biology-red.htm
www.biology.arizona.edu/cell-BIO/problem-sets/membranes/02t.html
www.mybodyindex.com/images/content/bloodvessel-1.gif

bill.srnr.arizona.edu/classes/182/Diploid.htm
www.veeco.com/library/nanotheater.php
www.thechemblog.com
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How can we model human blood?

Plasma
• Incompressible Newtonian fluid
• Viscosity comparable to water

Fluid inside red blood cell (hemoglobin)
• Incompressible Newtonian fluid
• Viscosity higher than plasma

Red Blood Cell Membrane
• Viscoelastic material

Elastic component (amount of deformation = strain) from stretching of cytoskeleton
Viscous component (rate of change of deformation = fluid friction) from fluid behavior of lipid bilayer
Membrane is incompressible and not isotropic (bending moments cannot be neglected)

• Cosserat Shell
◦ Small deformations, small strains (linear stress-strain relation)
◦ Small strains but large deformations
◦ Finite/large strains and large deformations
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Plasma, Hemoglobin, RBC membrane

• Navier-Stokes equations (Eulerian description) density ρ, viscosity µf constant

∇ · v = 0

ρ

(
∂v

∂t
+ v ·∇v

)
inertia

= − ∇p
pressure

+ µf∇2v
friction

+ ρg
gravity

Stress tensor for incompressible Newtonian fluid σ = −pI + T , shear stress tensor T = µf

[
∇v + (∇v)T

]
• Navier-Cauchy equations (Lagrangian description) λ = Eν

(1+ν)(1−2ν)
, µ = E

2(1+ν)
constant

ρü = (λ+ µ)∇(∇ · u) + µ∇2u+ ρg

Assuming small displacements u, small displacement gradients ∇u, linear stress-strain relation (σ = K : ε), isotropic
homogeneous material (constant λ, shear modulus µ, Young’s modulus E, Poisson ratio ν)

Stress tensor σ = λ(tr ε)I + 2µε, Green Lagrangian strain tensor ε = 1
2

[
∇u + (∇u)T

]
, dilatation ∇ · u = trE

• Biomembranes are highly deformable and are described by nonlinear material laws, they are
a 3D continuum body where one dimension is small [Holzapfel 2000, 2006]
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Finite strains, large deformations, strain energy density

• Deformation gradient F = ∂xi
∂Xj

of a continuum body

B ∈ R3 relates current configuration x(X, t) ∈ Ωt(B)

and reference configuration X ∈ Ω0(B)
In terms of displacements

u = x−X F = I + ∇u

• Green Lagrangian strain tensor is nonlinear

E = 1
2 [F

T · F − I]

= 1
2

[
∇u + (∇u)

T
+ (∇u)

T ·∇u
]

en.wikipdia.org

• From entropy inequality (const. entropy/temp.) follows that Cauchy stress tensor is a function
of the strain energy density function W (E).

σ =
1

J
F ·

∂W

∂E
· F T

J = detF =
ρ0
ρ

, strain energy density is a function of invariants I1 = trE, I2 = detE, I3 = 1
2

[
(trE)2 − trE2

]
• 2nd Piola-Kirchhoff tensor relates forces in reference configuration to areas in reference configuration

S = JF−1 · σ · F−T =
∂W

∂E

For a Saint Venant-Kirchhoff material S = λ(trE)I + 2µE the strain energy is W = λ
2

(trE)2 + µ trE2
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Differential geometry of a thin shell

A thin shell can be modeled as a surface consisting of material points with translational and
rotational degrees of freedom, describing displacement and rotation of an underlying
microstructure [Ciarlet, 2000,2005], [Rubin 2000]

• Point on surface in reference and present configuration

X(ξ
α
) x(ξ

α
, t) α = 1, 2

• Covariant surface base vectors and directors

Dα = X,α D3 =
D1×D2
|D1×D2|

Dα = x,α d3(ξ
α
, t) 6= d1×d2

|d1×d2|

normal extension: |a| < |d3|, shear deformation: angle(a,d3) 6= 0

• Point in 3D shell in reference configuration

X̂(ξ
i
) = X(ξ

α
) + ξ

3
D3

• Covariant base vectors at a point in 3D shell Gi = X̂,i

Gα = Dα + ξ
3
D3,α G3 = D3

www.hindawi.com/journals/jnm/2010/402591
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Momentum and director momentum balance equations
• Volume measure at a point in 3D shell

√
G = G1 ×G2 ·G3 =

√
D
[
1 + ξ3(D3,α ·Dα)

mean curvature
+ (ξ3)2D3,1

×D3,2
·D3√

D
Gaussian curvature

]
• Mass per unit area constant density ρ0, shell thickness h

m =

∫ h/2

−h/2
ρ0

√
Gdξ3 =

(
ρ0

√
Dh
) [

1 + h2

12

D3,1
×D3,2

·D3√
D

]
• Displacement vector and director displacement vectors

u = X − x

δi = Di − di

For α = 1, 2, δα = u,α. For small deformations δ3 = − (D3 · δα)Dα

• Linearized momentum and director momentum equation

m(ü+ y3δ̈3) = tα,α +mb

m(y3ü+ y33δ̈3) = mα,α−t3 +mb3

Inertia coefficients my3 =
∫ h/2
−h/2 ρ0ξ

3
√
G dξ3,my33 =

∫ h/2
−h/2 ρ0ξ

3ξ3
√
G dξ3, in-plane stress vector tα , in-plane

couple vectormα , body force vector mb, internal t3 =
∫ h/2
h/2

σ · ndξ3 and external director couple mb3
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Displacement, deformation, curvature, strain
• Couple vector and stress vector (linear stress-strain relation)

mα = m
ρ0

[(
K : Ē

)
·Hα +Kαβ · ββ

]
ti = m

ρ0

(
K : Ē

)
·Di −mα

(
D3,α ·Di

)
Modified stress tensorK : Ē = λ(tr Ē)I + 2µĒ, Bending tensorsKαβ (two parameter) [Rubin 2000]

General geometry in reference configuragionHα = 1
m

∫ h/2
−h/2 ρ0 ξ

3
√
GGα dξ3 (flat: Hα = 0)

• Deformation gradient and Green Lagrangian strain tensor in curvilinear coordinates

F = di ⊗Di E =
1

2
(F T · F − I)

For small deformations E = 1
2

(
δi ⊗Di +Di ⊗ δi

)
• Curvature vector curvature tensor κ = (F−1 · d3,α −D3,α )⊗Dα

βα = F−1 · d3,α −D3,α

For small deformations βα = δ3,α −
(
Di ·D3,α

)
δi

• Modified deformation gradient and Green Lagrangian strain tensor (not symmetric)

F̄ = F · (I + βα ⊗Hα) Ē = E + 1
2

(βα ⊗Hα +Hα ⊗ βα)
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Modeling biomembranes (red blood cells)

using

Calculus of Variations and the Method of Moving Frames
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Helfrich and BCM energy functionals
• Potential energy of a thin (no tension along any normal) biomembrane, assuming small

deformations and isotropic homogeneous material (see e.g. [Hemmen, Leibold 2007])

∆Epot =

(
kc

2
H2 +

kg

2
K

)
dA

bending rigidities kc = E
1−ν2

h3

12
, kg = − E

1+ν
h3

6
, Young’s modulus E, Poisson ratio ν

• Helfrich energy functional includes spontaneous curvature [Helfrich 1973]

F =

∫ (
kc

2
[H − k0]2 +

kg

2
K

)
dA

• Areas of the inner leaf and the outer leaf of the lipid bilayer may differ [Evans 1974]
Integrated mean curvature M =

∫
HdA should be constant (∆A = hM )

• Adding area and volume constraints gives the bilayer coupling model (BCM)

F =
1

2

∫ (
kcH

2 + kgK
)

dA+ γA− PV +QM

surface tension γ, pressure P , volume V , Lagrange multiplyer Q

Integrated Gaussian curvature does not change (topological invariant) and can be dropped
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Moving Frames

• Assume a moving point x of a surface M embedded in R3 with a frame ei attached to it
which moves to another position at time s+ ∆s

dx = lim
∆s→0

[
x− x′

]
dei = lim

∆s→0

[
ei − e′i

]
• Write dx = dxi+ dyj + dzk and dei in terms of ei and get structure equations

dx = σ1e1 + σ2e2

dei = ωijej

where σi and ωij are 1-forms. From ei · ej = δij follows that ωij = −ωji, i.e. antisymmetric

• From d (dx) = 0 and d (dei) = 0 obtain integrability conditions for a surface (σ3 = 0)

dσ1 = ω12 ∧ σ2

dσ2 = ω21 ∧ σ1

0 = ω31 ∧ σ1 + ω32 ∧ σ2

dωij = ωik ∧ ωki
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Mean and Gaussian curvature, vector calculus
• Define Gaussian curvature by one and only linearly independent 2-form on R2

ω31 ∧ ω32 = Kσ1 ∧ σ2

• Define mean curvature by another 2-form

ω31 ∧ σ2 − ω32 ∧ σ1 = 2Hσ1 ∧ σ2

• ω31, ω32 are linear combinations of σ1, σ2. With 0 = ω31 ∧ σ1 + ω32 ∧ σ2 ,

[
ω31

ω32

]
=

[
a b

b c

]
︸ ︷︷ ︸

R

[
σ1
σ2

]

H = trR = a+ c

K = detR = a c− b2

• The Hodge star operator applied to a differential k-form in R2 gives the complement to
dA = σ1 ∧ σ2, i.e. ∗σ1 = σ2 and ∗σ2 = −σ1. Using integrability conditions obtain

∇ · u dA = d ∗ (u · dx)

= d ∗ (uiei · σjej) = d ∗ (u1σ1 + u2σ2) = d (u1σ2 − u2σ1)

= (du1) ∧ σ2 + u1 (ω21 ∧ σ1)− (du1) ∧ σ2 − u2 (ω12 ∧ σ2)

∆f dA = d ∗ df
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First variations of point in surface and frame

• Describe an infinitesimal deformation of a surface by a displacement vector at each point
of the surface

δx = u = Σ1e1 + Σ2e2 + Σ3e3

• Frame is changed (rotated) by deformation of the surface

δei = Ωijej

• From δdx = dδx, δdei = dδei, structure equations, integrability conditions, and mean and
Gaussian curvatures compute first variations of σi, ωij and Ω13,Ω23

δσ1 = du · e1 − σ2Ω21

δσ2 = du · e2 − σ1Ω12

δωij = dΩij + Ωikωkj − ωikΩkj

Ω13 = Ω3,1 + aΣ1 + bΣ2

Ω23 = Ω3,2 + bΣ1 + cΣ2
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First variation of energy functional
• From σi ∧ σi = 0, mean curvature H, and ∇ · u dA = d ∗ u · dx compute first variation of

surface area element and of mean curvature

δ dA = (∇ · u− 2HΣ3) dA

δH =
[
∇2 +H2 − 2K

]
Σ3 +∇H · v

Change in area is due curvature or due change in the boundary curve (∇ · u = ∇ · δx)

• Energy functional of a fluid membrane (only bending, no in-plane shear strain) was

F =
1

2

∫ (
kcH

2 + kgK
)

dA+ γA− PV +Q

∫
H dA

• First variation of F =
∫
H2 dA

δF =

∫
(2HδH) dA+H2 (δdA) =

∫ (
2H
[
∇2 +H2 − 2K

]
−H3

)
Σ3 dA

• Integrating by parts (no boundary integrals) and adding other terms gives (δ
∫

dV =
∫

Σ3dA)

Euler-Lagrange equation (shape equation) for a closed lipid bilayer

kc

2

[
2∇2H +H

(
H2 − 4K

)]
− 2γH + P = 0
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Bending and shear stress and open biomembranes

• For open biomembranes the first variation has boundary integrals. The resulting equations
are shape equation, force and momentum equations.

• Assume 2D isotropic homogeneous material. For small in-plane strains energy functional is
additionally a function of the strain invariants

ε =

[
ε11 ε12

ε21 ε22

]
J = 1

2
tr ε = ε11 + ε22 Q = det ε = ε11ε22 − ε212

• Free energy of a cell membrane [Tu, Ou-Yang 2004, 2008]

F(H,K; J,Q) =

∫ (
WH [H,K] +WJ [J,Q]

)
dA+ γA− PV +QM

where WH = 1
2

(
kcH2 + kgK

)
and WJ = 1

2

(
kdJ

2 + ksQ
)

kd = Eh
1−ν2

, ks = − 2Eh
1+ν

• Take first variations and get three equilibrium (Euler Lagrange) equations, one for shape
and two for in-plane stresses
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Modeling biomembranes

using

Discrete Exterior Calculus
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DEC and FEEC

• Discrete Exterior Calculus (DEC)
Reformulate operators from exterior calculus in such a way that the discretized operator
preserves the essential mathematical features of the continuous operator
[Hirani 2006], [Desbrun, Kanso, Tong 2006] (Caltech)
Stable numerical methods (Laplace equations, Darcy flow, time integrators, fluids)
New results on discretization of Euler fluids. How to discretize stress tensor?

• Finite Element Exterior Calculus (FEEC)
Theory of constructing stable finite element spaces in the framework of exterior calculus, de
Rham cohomology, and Hodge theory
[Arnold (UMN), Falk, Winther 2010]
Constructing stable finite element spaces for shells, elasticity complex

• In electromagnetism exterior calculus and Whitney forms (FEs) was used earlier
[Bossavit 1988, 1998]

• Computations are independent of geometry, operate on simplices (vertices, triangles)
Defined on general manifolds, suitable for problems with moving interfaces and shells
Workshop: Discrete Differential Geometry for Multiphase Flow Problems (4/2010)
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Simplices, boundary operator, chains
• A k-simplex σk is the non degenerate convex hull of (k + 1)

(oriented) vertices σk = (v0, v1, v2, ..., vk)

0-simplex point σ0 = (v0)

1-simplex directed line σ1 = (v0, v1)

2-simplex oriented triangle σ2 = (v0, v1, v2)

• The boundary of a k-simplex is a sum of (k − 1)-simplices
∂k(v0, v1, v2, ..., vk) =

∑k
i=0(−1)i(v0, v1, ..., vi−1, vi+1, vk)

boundary of a point ∂0(v0) = ∅
boundary of an edge ∂1(v0, v1) = (v1)− (v0)

boundary of a triangle ∂2(v0, v1, v2) = (v1, v2)− (v0, v2) + (v0, v1)

• Let T (Ω) be a triangulation of a manifold. The primal mesh (black)
is a simplicial complex. We denote all k-simplices of T by Tk

• A k-chain is a linear combination of simplices
∑

σk∈Tk
c(σk)σk

The set of all this vectors form the space of k-chains Ck

The dual space to Ck is the space of k-cochains Ck∗
www.sagemath.org/doc/reference/sage/homology/simplicial complex.html
www-sop.inria.fr/members/Herve.Delingette/simplex nice simplicial complex
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Discrete: diff. forms, exterior derivative, Hodge star

• A discrete differential k-form is the linear map
ωk : Ck → R, associated with a k-cochain
Integrating a diff. form over a simplex gives a number∫
σk

ωk =
∫
σk

ωk
〈
σk, ωk

〉
0-forms values at points
1-forms circulation along edges
2-forms flux through faces
3-forms integrated densities

• The discrete exterior derivative is defined by Stokes theorem∫
σk

dk−1ω
k−1 =

∫
∂kσ

k

ωk−1
〈
σk, dωk−1

〉
=
〈
∂σk, ωk−1

〉
Discrete exterior derivative is the transpose of the boundary operator

D0 =


v0 v1 v2

e0 −1 1 0

e1 −1 0 1

e2 0 −1 1



• Discrete Hodge star brings forms to dual simplices
Cotangent formula and circumcenters leads to diagonal matrix

Whitney forms are generalized barycentric coordinates

www.geometry.caltech.edu/pubs.html
en.wikipedia.org/wiki/Simplicial complex
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Vector calculus, exterior derivative and Hodge star

• The coefficients of the 1-form ∗dα are the components of the vector curl 〈A,B,C〉

∗
↑
1

d
↑
2

α
↑
1

= ∗d (Adx+Bdy + Cdz)

= ∗
[(

∂C

∂y
−

∂B

∂z

)
dy ∧ dz −

(
∂A

∂z
−

∂C

∂x

)
dx ∧ dz +

(
∂B

∂x
−

∂A

∂y

)
dx ∧ dy

]

=

(
∂C

∂y
−

∂B

∂z

)
dx+

(
∂A

∂z
−

∂C

∂x

)
dy +

(
∂B

∂x
−

∂A

∂y

)
dz

• The 0-form ∗d∗α is div 〈A,B,C〉

∗α = A dy ∧ dz −B dx ∧ dz + C dx ∧ dy

d
↑
3

∗
↑
2

α
↑
1

=

(
∂A

∂x
+

∂B

∂y
+

∂C

∂z

)
dx ∧ dy ∧ dz

• The Laplace operator ∆f = div grad f is the 0-form ∗d∗df

∗
↑
0

d
↑
3

∗
↑
2

d
↑
1

f =
∂2f

∂x2
+

∂f

∂y2
+

∂2f

∂z2
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Where is the pressure defined?
Primal and dual cochain complex

C0 C1 C2 C3

C3
∗ C2

∗ C1
∗ C0

∗

D0

M0

D1

M1 M1

D2

M2 M3

DT2DT1DT0

Laplace Beltrami on Ω ⊂ R3

∆u = 0 in Ω

∂u
∂n

= 0 on ∂Ω

DT0 M1D0u = f

u ∈ C0, [Bell 2008], [Gillette 2010]

Darcy flow on Ω ⊂ R3

(mixed LBO for φ = 0)

v + k
µ
∇p = 0 in Ω

∇ · v = φ in Ω

v · n = ψ on ∂Ω

[
− k
µ
M1 DT1

D1 0

][
v

p

]
=

[
0

ψ

]

v ∈ C2, p ∈ C0
∗ , [Hirani 2011]
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END

THANK YOU
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