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Modeling biomembranes (red blood cells)

using

Cosserat Shell Theory
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What do we know about human blood?
Outside of Cell

mybloodyourblood.org/hs-biology-red.htm bill.srnr.arizona.edu/classes/182/Diploid.htm
www.biology.arizona.edu/cell-BIO/problem-sets/membranes/02t.html www.veeco.com/library/nanotheater.php
www.mybodyindex.com/images/content/bloodvessel-1.gif www.thechemblog.com
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How can we model human blood?

Plasma

e Incompressible Newtonian fluid
o Viscosity comparable to water

Fluid inside red blood cell (hemoglobin)

e Incompressible Newtonian fluid
o Viscosity higher than plasma

Red Blood Cell Membrane

e Viscoelastic material
Elastic component (amount of deformation = strain) from stretching of cytoskeleton
Viscous component (rate of change of deformation = fluid friction) from fluid behavior of lipid bilayer
Membrane is incompressible and not isotropic (bending moments cannot be neglected)

e Cosserat Shell
o Small deformations, small strains (linear stress-strain relation)
o Small strains but large deformations
o Finite/large strains and large deformations
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Plasma, Hemoglobin, RBC membrane

o Navier-Stokes equations (Eulerian description) density p, viscosity 1« 7 constant
V-v

ov 2
pl —+v- Vv = — Vp +purV°u+ pg

ot pressure friction gravity
inertia

0

Stress tensor for incompressible Newtonian fluid o = —pI + T, shear stress tensor T = ¢ [V v+ (V v)T}

constant

» Navier-Cauchy equations (Lagrangian description) A= gty b = e

pii. = A+p)V(V-u)+pViu+pg

Assuming small displacements w, small displacement gradients W w, linear stress-strain relation (o0 = K : &), isotropic
homogeneous material (constant A, shear modulus ., Young’s modulus E, Poisson ratio v)

Stress tensor o = A(tre)I + 2..e, Green Lagrangian strain tensor e = % [V u+ (V u)T] , dilatation V - uw = tr E

e Biomembranes are highly deformable and are described by nonlinear material laws, they are
a 3D continuum body where one dimension is small [Holzapfel 2000, 2006]

() 5/23



Finite strains, large deformations, strain energy density
dx,
X
B € R3 relates current configuration (X, t) € Q4(B)
and reference configuration X € Qo (B)

In terms of displacements

Deformation gradient F' = of a continuum body

Deformed
x=1(X.0) CnnﬂgKu‘r[a:IE; t=t

Undeformed
Configuration, t =0

u=x—X F=I1+Vu
Green Lagrangian strain tensor is nonlinear
E=LiFT . F-1I

1
2
=3 [V" +(Vu)' + (vu)" - Vu] X en.wikipdia.org

From entropy inequality (const. entropy/temp.) follows that Cauchy stress tensor is a function
of the strain energy density function W (E).
1 ow
c=—-F.— .FT
J 0FE

J=detF = ‘)70, strain energy density is a function of invariants Iy = tr E, Iy = det E, I3 = % [(tr E)? —tr EQ]

2nd Piola-Kirchhoff tensor relates forces in reference configuration to areas in reference configuration
oW
T E
For a Saint Venant-Kirchhoff material S = A(tr E)I + 2, the strain energy is W = 3 (r E)? + ptr B2
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Differential geometry of a thin shell

A thin shell can be modeled as a surface consisting of material points with translational and
rotational degrees of freedom, describing displacement and rotation of an underlying

microstructure [Ciarlet, 2000,2005], [Rubin 2000]

e Point on surface in reference and present configuration

X (%) ®(€%,1) a=1,2
e Covariant surface base vectors and directors
D1 xD
D, = X.. Ds = BBy
Do =, d3 (67, 1) # 1559

dy Xda]|
normal extension: |a| < |d3|, shear deformation: angle(a, d3) # 0
e Point in 3D shell in reference configuration
X(€) = X&)+ Ds
e Covariant base vectors at a point in 3D shell G; = )A(,i

G, =D, +£¢Ds G3 = Ds

(RN F

2 © &880
I3

S == PR =
T%¢ @

Ay

Transverse shear

www.hindawi.com/journals/jnm/2010/402591
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Momentum and director momentum balance equations
Volume measure at a point in 3D shell

VG =Gix Gy G = VD[1+€ (D, - D)+ (€%)

mean curvature

2 D3,y XD3,,-Dg
VD

Gaussian curvature

Mass per unit area constant density pg, shell thickness h

h/2 2 D3 xDs.-D
m= poVGded = (poVDh) |14 b 221280178
[h/Q o ( 0 )[ 12 VD ]

Displacement vector and director displacement vectors
u=X—x
51' = Di — di
Fora =1,2, o = u,. For small deformations 63 = — (D3 - §o) D*
Linearized momentum and director momentum equation

m(i +y383) = %, +mb

m(yi + y3383) = m®,q —t> + mb®

h/2
—h/2

o - nd¢? and external director couple mb?

Inertia coefficients my> = ff,/f/z p0&3VGde3, my33 =

couple vector m®, body force vector mb, internal t3 = f://;
0]

p0&3€3/G deg3, in-plane stress vector £, in-plane
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Displacement, deformation, curvature, strain

Couple vector and stress vector (linear stress-strain relation)
a _ m A « af |
m® = [(K: E)  H* + K - 8]
i_ m . T oY 7
t—%(K.E)-D -m (Dg,a-D)
Modified stress tensor K : E = A(tr E)I + 2u E, Bending tensors KB (two parameter) [Rubin 2000]
General geometry in reference configuragion H = % ff{f/z po €3VGG™ d¢? (flat HY = 0)

Deformation gradient and Green Lagrangian strain tensor in curvilinear coordinates
F=d;® D' E:%(FTAFfl)
For small deformations E = 1 (8; ® D* + D' ® §;)
Curvature vector curvature tensor k = (F~! - d3 , — D3 ) ® D%
B,=F"1.-ds, —Ds,

For small deformations B, = 83,, — (D" - D3, ) 6;

Modified deformation gradient and Green Lagrangian strain tensor (not symmetric)

F=F (I+8,®H") E=E+;(B,®H"*+H"®8,)
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Modeling biomembranes (red blood cells)

using

Calculus of Variations and the Method of Moving Frames
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Helfrich and BCM energy functionals

Potential energy of a thin (no tension along any normal) biomembrane, assuming small
deformations and isotropic homogeneous material (see e.g. [Hemmen, Leibold 2007])

AEpot = (%H2 + %QK) dA

3 ) !
E_ k" Young’s modulus E, Poisson ratio v

. A 3
bending rigidities k. = %ﬁ b kg =— 2

Helfrich energy functional includes spontaneous curvature [Helfrich 1973]

.F:/(%[H—kgﬁ—i-%gk')d/x

Areas of the inner leaf and the outer leaf of the lipid bilayer may differ [Evans 1974]
Integrated mean curvature M = [ HdA should be constant (AA = h M)

Adding area and volume constraints gives the bilayer coupling model (BCM)
1
F= 5/(kcH? +kgK)dA+~yA— PV + QM

surface tension ~, pressure P, volume V/, Lagrange multiplyer Q

Integrated Gaussian curvature does not change (topological invariant) and can be dropped

()
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Moving Frames

e Assume a moving point « of a surface M embedded in R with a frame e; attached to it
which moves to another position at time s + As

de = lim [z —a]
As—0
de; = Aligo [ei — eﬂ

e Write de = dzt 4 dyj + dzk and de; in terms of e; and get structure equations

de = o1e; +o2es
de; = wije;
where o; and w; ; are 1-forms. From e; - e; = §;; follows that w;; = —wj;, i.e. antisymmetric

e Fromd (dz) = 0 and d (de;) = 0 obtain integrability conditions for a surface (o3 = 0)

do1 = wiaAo2
do2 = w21 Aoy

0 = w31 Aol +ws2 Aoz
dwij = wik Awgg
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Mean and Gaussian curvature, vector calculus
Define Gaussian curvature by one and only linearly independent 2-form on R?

w31 Awsz = Koy A o2

Define mean curvature by another 2-form

w31 Nog —wsa Aoy =2Ho1 N og

w31, wsz are linear combinations of o1, 0a. With 0 = w31 A o1 + wss A o2, [“31} = {‘; i} [Zl]
2

w32
H = trR=a+c R
K = detR=ac—b?

The Hodge star operator applied to a differential k-form in R? gives the complement to
dA = o1 A o2, i.e. x01

V -udA

AfdA

= o9 and xo2 = —o;. Using integrability conditions obtain
dx (u-dx)
dx* (uje; - oje5) =d* (w101 + u202) = d(uro2 — uz01)

(dul) Noo + uy ((.Ugl /\0‘1) — (dul) N oo — u2 (wlg A\ 0‘2)

dxdf

13/23



First variations of point in surface and frame

¢ Describe an infinitesimal deformation of a surface by a displacement vector at each point

of the surface

or =u = Xie; + Xoes + X3es

e Frame is changed (rotated) by deformation of the surface

éei = Qije]-

e From §dx = déx, dde; = dde;, structure equations, integrability conditions, and mean and

Gaussian curvatures compute first variations of o;,w;; and Q13, Q23

do1
doa
owij
Qi3
Qa3

du-e; — 02021

du - ez — o1Q12

A2 + Qupwrj — Wikl
Q3,1 +aXy + bXa

Q3,2 +0X1 + cXo
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First variation of energy functional

From o; A 0; = 0, mean curvature H, and V - udA = d * u - dz compute first variation of
surface area element and of mean curvature

§dA= (V- -u—2HY3)dA
6H =[V?+ H? - 2K]S3+VH v
Change in area is due curvature or due change in the boundary curve (V - w = V - §z)
Energy functional of a fluid membrane (only bending, no in-plane shear strain) was
F= %/(kcH2+kgK)dA+7A—PV+Q/HdA
First variation of 7 = [ H2dA

6F = /(2H6H) dA + H? (6dA) = / (2H [V2 + H? - 2K]| — H®) ¥3dA

Integrating by parts (no boundary integrals) and adding other terms gives (6 [ dV = [ X3dA)
Euler-Lagrange equation (shape equation) for a closed lipid bilayer

% [2V2H + H (H? —4K)] —2yH+ P =0
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Bending and shear stress and open biomembranes

For open biomembranes the first variation has boundary integrals. The resulting equations
are shape equation, force and momentum equations.

Assume 2D isotropic homogeneous material. For small in-plane strains energy functional is
additionally a function of the strain invariants

€11 €12
e = J = %tre:su + €92 Q=detE=€11€227€%2
€21 €22

Free energy of a cell membrane [Tu, Ou-Yang 2004, 2008]

P 3,Q) = [ (Wil K]+ W,17.Q)dA+ A~ PV + QM

where Wy = 1 (keH? + koK) and W; = 1 (kaJ? + ksQ) kg = (b k= — 28k

Take first variations and get three equilibrium (Euler Lagrange) equations, one for shape
and two for in-plane stresses
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Modeling biomembranes

using

Discrete Exterior Calculus
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DEC and FEEC

o Discrete Exterior Calculus (DEC)
Reformulate operators from exterior calculus in such a way that the discretized operator
preserves the essential mathematical features of the continuous operator
[Hirani 2006], [Desbrun, Kanso, Tong 2006] (Caltech)
Stable numerical methods (Laplace equations, Darcy flow, time integrators, fluids)
New results on discretization of Euler fluids. How to discretize stress tensor?

¢ Finite Element Exterior Calculus (FEEC)
Theory of constructing stable finite element spaces in the framework of exterior calculus, de
Rham cohomology, and Hodge theory
[Arnold (UMN), Falk, Winther 2010]
Constructing stable finite element spaces for shells, elasticity complex

¢ In electromagnetism exterior calculus and Whitney forms (FEs) was used earlier
[Bossavit 1988, 1998]

o Computations are independent of geometry, operate on simplices (vertices, triangles)
Defined on general manifolds, suitable for problems with moving interfaces and shells
Workshop: Discrete Differential Geometry for Multiphase Flow Problems (4/2010)
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Simplices, boundary operator, chains

A k-simplex o* is the non degenerate convex hull of (k + 1)
(oriented) vertices o = (vo, v1, v2, ..., vg)

0-simplex  point a® = (vo)

1-simplex  directed line ol = (vo,v1)

2-simplex  oriented triangle o? = (vo, v1,v2)

The boundary of a k-simplex is a sum of (k — 1)-simplices

05 (V0, V1,02, ey Ug) = SOF_ (= 1) (V0, V1, ey Vi1, Vit 1, VK)
boundary of a point do(vo) =0

boundary of an edge 01 (vo,v1) = (v1) — (vo)
boundary of a triangle 92 (vo, v1,v2) = (v1,v2) — (vo,v2) + (vo,v1)

Let T'(2) be a triangulation of a manifold. The primal mesh (black)
is a simplicial complex. We denote all k-simplices of T" by T,

A k-chain is a linear combination of simplices 3" ¢(o*)o®
okeTy,

The set of all this vectors form the space of k-chains C*

The dual space to C* is the space of k-cochains C*

www.sagemath.org/doc/reference/sage/homology/simplicial_complex.html
www-sop.inria.fr/members/Herve.Delingette/simplex

()
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nice simplicial complex

19/23



Discrete: diff. forms, exterior derivative, Hodge star

o A discrete differential k-form is the linear map

wk . CF — R, associated with a k-cochain Glnloricn)  domsielged v o)
Integrating a diff. form over a simplex gives a nhumber 2 LA ‘. 2

b d ]
f ok = f wk <0.k’wk> \_ A A :
ok ok - s | e

0-forms  values at points
1-forms  circulation along edges
2-forms  flux through faces
3-forms integrated densities

The discrete exterior derivative is defined by Stokes theorem

vo vl v2
I dp_jwh—1 = I wk—1 <0k’dwk—1> — <agk’wk—1> N eo -1 1 0
0 = e1 —1 0 1
ok opa® eq 0o -1 1
Discrete exterior derivative is the transpose of the boundary operator
o Discrete Hodge star brings forms to dual simplices
Cotangent formula and circumcenters leads to diagonal matrix
=

Whitney forms are generalized barycentric coordinates

www.geometry.caltech.edu/pubs.html
en.wikipedia.org/wiki/Simplicial_complex
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Vector calculus, exterior derivative and Hodge star

e The coefficients of the 1-form «d« are the components of the vector curl (A, B, C)

?(Ti(% = *d (Adz + Bdy + Cdz)
121 B A B A
= *{(E—a—)dy/\dz—(a——E)dx/\dz—i—(a——a—)dm/\dy]
oy 0z 0z 0x 0x oy
oC 0B 0A oC 0B 04
— — — | dz — — — ) ds — - —)d
(ay az) ‘L+<az ax) y+(6m ay) N

e The 0-form «xdx*« is div (A, B, C)
Ady Adz — Bdz Adz+ Cdx Ady

0A 9B oC
= — 4+ —+4+ —)dzAdyAd
(6m+6y+az) ! Y N

T —

w0,
=0

*
T
2

e The Laplace operator A f = div grad f is the 0-form «dx=d f
2f af | %

dsdf = 21
T#Tf 0x2  dy? 022
321

o= %
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Primal and dual cochain complex

Where is the pressure defined?

CO Do Cl D1 c2 D2 CS
1“410 JMI My 1“2 JM3
3 2 1 0
€3 e 2 el e 8

0 1

Laplace Beltrami on Q C R3

Au = 0 in Q
e = 0 on 29
n

DM Dou = f

u € CY, [Bell 2008], [Gillette 2010]

2

Darcy flow on Q C R3
(mixed LBO for ¢ = 0)

v+ %Vp = 0 in Q
Vv = ¢ in Q
v-m = 1 on 0N

—&My DY

-1

v € C2%, p € CY, [Hirani 2011]

Dy 0

Laplace Beltrami

- LBO Dirichlet
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END
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