
Linear Algebra I: The Good Stuff

Abraham D. Smith

February 3, 2015

Preface

This packet works through the last topics for Linear Algebra I. Along with row-reduction
(which we’ve seen plenty of times before), these are precisely the most-used tools in appli-
cations of linear algebra.

• There are two versions of this document, one called goodstuffT.pdf formatted for
reading on tablets or printing 2-up on paper and goodstuffP.pdf formatted for reading
normally on paper.

• Be sure that you can do all the
:::
Ex

:::::
0.0: exercises ! These are the most significant

statements in this subject.

• I have stopped putting arrows over vectors, so ~v is now just v. You should be able to
figure out what is a vector and what is a scalar in context.

• We are only concerned with finite-dimensional vector spaces, because we want to be
able to write finite bases. A great deal of this can be extended to infinite-dimensional
spaces, but that is a topic for another semester.

• This document will be updated daily as typos are found. Check the compile date.

:::
Ex

::::
0.1: The first person to report any particular typo gets credit. The values are +1

point for spelling and grammar, +2 for math typos, and +4 for logical errors.
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Linear Algebra I: The Good Stuff 1 LINEAR TRANSFORMATIONS

1 Linear Transformations

1.1 Basic Definitions

Given vector spaces V and W , a linear transformation is a function F : V → W with the
property that, for any r, s ∈ R and u, v ∈ V ,

F (ru+ sv) = rF (u) + sF (v). (1.1)

The kernel of F is the set kerF = {v ∈ V : F (v) = 0}. The image of F is the set
imF = {w ∈ W : ∃v ∈ V, F (v) = w} = F (V ).

Linear transformations are also called linear maps or homomorphisms of vector
spaces. If F is one-to-one, then we call F injective and write F : V ↪→ W . If F is onto,
then we call F surjective and write F : V � W . If F is both injective and surjective, we
call F bijective or say F is an isomorphism, writing F : V

∼→ W . In that case, we would
say V and W are isomorphic via F , writing V ∼= W .

::
Ex

:::::
1.1: Prove that kerF and imF are subspaces of V and W , respectively.

::
Ex

:::::
1.2: Prove that kerF = {0} if and only if F is injective.

::
Ex

:::::
1.3: Prove that, if F is an isomorphism, then V and W have the same dimension.

Lemma 1.1 (Transformations to Matrices). Given bases for the domain and range, a linear
transformation can be represented by an s× n matrix. This matrix representation is unique
once the bases are chosen.

Proof. Suppose that (α1, α2, . . . , αn) is a basis for V and that (β1, β2, . . . , βs) is a basis for
W . Then there are numbers fik for 1 ≤ i ≤ n and 1 ≤ k ≤ s such that

F (αi) =
s∑

k=1

fikβk, ∀i = 1, 2, . . . , n. (1.2)

These numbers fik have no ambiguity, since any vector in W has a unique decomposition in
the basis β. Let A be the s× n matrix whose (k, i) entry Ak,i is the number fik. (That is, if
we think about (fik) as an n× s matrix, then A = fT .) For any v ∈ V , we can decompose
it in terms of the basis α in a unique way:

v =
∑
i

viαi =


v1
v2
...
vn


α

Therefore, applying the linear transformation we have

F (v) = F

(∑
i

viαi

)
=
∑
i

viF (αi) =
∑
i

vi
∑
k

fikβk =
∑
i,k

Ak,iviβk =


∑

iA1,ivi∑
iA2,ivi

...∑
iAs,ivi


β

.

(1.3)
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1 LINEAR TRANSFORMATIONS Linear Algebra I: The Good Stuff

In other words, F (v) = w corresponds to the matrix equation
A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n
...

...
. . .

...
As,1 As,2 · · · As,n



v1
v2
...
vn


α

=


w1

w2
...
ws


β

(1.4)

Corollary 1.2. If a basis (βk) for W is understood, then ColA = imF .

Proof.
:::
Ex

:::::
1.4: Combine your earlier proof that imF is a subspace of W with the previous

lemma.

1.2 Example: Linear Transformations to Matrices

Let V = P3 and W = P5. Let F be the function “integrate from 0.” That is, if p ∈ P3, then
F (p) =

∫ x
0
p(τ)dτ . In calculus, you proved that F (c1p1 + c2p2) = c1F (p1) + c2F (p2) for any

scalars c1 and c2 and any “vectors” p1 and p2 in P3, so this is a linear transformation.

Let α1 = 1, α2 = x − 1, α3 = (x − 1)2, and α4 = (x − 1)3 be a basis for V . Let
β1 = 25(x− 1)5, β2 = 16(x− 1)4, β3 = 9(x− 1)3, β4 = (x− 1)2, β5 = x+ 1, and β6 = −1 be
a basis for W .

::
Ex

:::::
1.5: Verify that these are bases of their respective spaces.

To compute the matrix representation of F in these bases, consider first

F (a1) =

∫ x

0

1dτ = x

= f1125(x− 1)5 + f1216(x− 1)4 + f139(x− 1)3 + f14(x− 1)2 + f15 (x+ 1) + f16 (−1) ,

(1.5)

examining which we can see that

(f11, f12, f13, f14, f15, f16) = (0, 0, 0, 0, 1, 1). (1.6)

Similarly,

F (a4) =

∫ x

0

(τ − 1)3dτ =
1

4
(x− 1)4 − 1

4

= f4125(x− 1)5 + f4216(x− 1)4 + f439(x− 1)3 + f44(x− 1)2 + f45 (x+ 1) + f46 (−1) ,

(1.7)

examining which we can see that

(f41, f42, f43, f44, f45, f46) =

(
0,

1

64
, 0, 0, 0,−1

4

)
. (1.8)
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Linear Algebra I: The Good Stuff 1 LINEAR TRANSFORMATIONS

Therefore, completing the other cases as well, we find that F is represented by the matrix
0 0 0 0
0 0 0 1

64

0 0 1
27

0
0 1

2
0 0

1 0 0 0
1 1

2
−1

3
1
4

 (1.9)

On the other hand, you might prefer to use a different basis. Suppose instead that we
use the “standard” basis for both P3 and P5. You can check that F is represented by the
matrix: 

0 0 0 0
1 0 0 0
0 1

2
0 0

0 0 1
3

0
0 0 0 1

4

0 0 0 0

 (1.10)

These look totally different, yet they represent the same transformation!

1.3 Matrices to Linear Transformations

Suppose you have vector spaces V and W with bases (αi) and (βk), respectively. Then
any matrix A specifies a unique linear transformation, FA, defined by FA(αi) = Ak,iβk and
extending by linearity.

Proof. First, we need to make sure that FA actually defines a function. Then, we need to
make sure that the function is a linear transformation. Suppose that v ∈ V . Because (αi)
is a basis of V , there is a unique decomposition v =

∑
i uiαi. Therefore, “extending by

linearity” means that FA(v) is defined as

FA(v) =
∑
i

viF (αi) =
∑
i,k

Ak,iviβk, (1.11)

which is a well-defined vector in W . Therefore, every v ∈ V has a well-defined output value in
W . Now to linearity: suppose that r, s ∈ R and u, v ∈ V with u =

∑
i uiαi and v =

∑
i viαi.

:::
Ex

::::
1.6: Now expand and use the previous formula to see that FA(ru+sv) = rFA(u)+sFA(v).

1.4 Example: Matrices alone are meaningless

If you have two matrices that look the same, do they represent the same linear transforma-
tion? Consider your favorite matrix,

A =

[
1 0
0 1

]
Compiled: February 3, 2015 5 Page 5 of 20



1 LINEAR TRANSFORMATIONS Linear Algebra I: The Good Stuff

You usually think of this as the “identity transformation on R2” but that interpretation
relies on the context of R2 with a specific basis. Here are two other ways that the matrix A
could be interpreted in other contexts:

• Let V = R2 with the standard basis. Suppose that W = {(x, y, z) ∈ R3 : 2x+ 3y− z =
0} with the basis β1 = (1, 0,−2) and β2 = (−3, 2, 0). In this basis the transformation
FA takes R2 to some sort of oblique, stretched plane in R3. This transformation cannot
be the identity, since V 6= W .

• Here’s an even crazier example: suppose that V = P1 and W = C (a.k.a., the complex
plane) and α1 = 1 and α0 = x and β1 = −i and β2 = 3

2
. Then the corresponding

transformation is

FA(p) =

(
∂p

∂x
−
∫ x

0

p

) ∣∣∣
x=
√
−1

So FA(a+ bx) = b− ai− 1
2
bi2 = 3

2
b− ai ∈ C.

1.5 Why do we dwell on Linear Algebra?

A matrix is meaningless until you know which spaces and which bases are in
use. For most of your mathematical life, everyone was using the standard basis in Rn, but
they didn’t have to! An amazing consequence is that everything you learned about Rn and
systems of linear equations and matrices for Rn applies equally well to all these crazy spaces
and their homomorphisms. That is the point of linear algebra! Some of the most
important linear transformations and vector spaces appear as

1. calculus on smooth functions (including polynomials)

2. construction of solutions of differential equations

3. frequency analysis on wave-like functions

4. compression, error-detection, and encoding of digital data

5. interactions of elementary particles

6. gravitational energy and force in space-time

In at least one way, these are all the same family of problems, and this is why Linear Algebra
is the gateway to all higher mathematics and a huge amount of applied science.

1.6 Isomorphisms as Basis-Changers

Lemma 1.3. If G : V → W is an isomorphism, then it takes any basis of V to a corre-
sponding basis of W .

Proof. This is probably how you proved Exercise 1.1.
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That means that we can interpret isomorphisms as basis-changers.
Suppose that you are solving some interesting problem in R3 with the standard basis,

(ei). You have discovered that a particular vector is important for your work, say

v =

4
1
2


e

= 4e1 + e2 + 2e3 (1.12)

On the other hand, your friend Igor hath a neck injury (and a lithp) and theeth everything
thidewayth and thlightly thtretched. Igor preferth a bathith (β1, β2, β3). But, you would
write these as

β1 =

2
1
0


e

= 2e1 + e2, and β2 =

−1
3
0


e

= −e1 + 3e2, and β3 =

0
0
1


e

= e3 (1.13)

How would Igor write thith vector? Igor hath thome numberth u1, u2, u3 where v = u1β1 +
u2β2 + u3β3, so

0 = v − v
= (4e1 + e2 + 2e3)− (u1β1 + u2β2 + u3β3)

= (4e1 + e2 + 2e3)− (u1(2e1 + e2) + u2(−e1 + 3e2) + u3e3)

= (4− 2u1 + u2)e1 + (1− u1 − 3u2)e2 + (2− u3)e3.

(1.14)

Therefore, you can find Igor’th coordinateth by solving the system2 −1 0
1 3 0
0 0 1

u1u2
u3

 =

4
1
2

 . (1.15)

:::
Ex

::::
1.7: Tholve thith thythtem to thee thingth from Igor’th perthpective.
Implicitly here, we have written an isomorphism G : V → W=V that has the following

properties:

1. G(e1) = β1 and G(e2) = β2 and G(e3) = β3;

2. Using the basis (ei) for the domain and (βi) for the range, G is represented by the
matrix I, but remember the lesson of Example 1.4;

3. Using the basis (ei) for both the domain and the range, G is represented by the non-
singular matrix

P =

2 −1 0
1 3 0
0 0 1

 . (1.16)

4. To change from your coordinates to Igor’th coordinateth, apply P−1.

:::
Ex

::::
1.8: Go back to Example 1.2 about integrals and find the basis transformations.
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1 LINEAR TRANSFORMATIONS Linear Algebra I: The Good Stuff

1.7 What can you and Igor agree on?

Once we choose a basis (α1, . . . , αn) for V , we know that F : V → V is represented by an
n× n matrix, A. Question: What properties of F are “the same” no matter what basis you
choose?

Lemma 1.4. Suppose that F : V → V is represented by the matrix A when the basis (αi) is
used for both the domain and range. Similarly, suppose that F is represented by the matrix
B when the basis (βi) is used for both the domain and range. Suppose also that G : V → V
is the isomorphism defined by G(α1) = β1, G(α2) = β2, . . . , G(αn) = βn. Suppose that,
using the basis (αi) for both the domain and the range, the transformation G is represented
by the matrix P . Then

B = P−1AP and A = PBP−1. (1.17)

In other words, if you say “F is represented by A”, then Igor will say “F ith reprethented
by B.” So, if w = F (v), then we have the following diagrams:

Vα Wα

Vβ Wβ

G

F

G

F

v =

[
v1
v2

]
α

w =

[
w1

w2

]
α

v =

[
u1
u2

]
β

w =

[
z1
z2

]
β

P−1·

A·

P−1·

B·

Suppose that there is a property “$” of matrices such that $(A) = $(P−1AP ) = $(A) for
any non-singular P . No matter how twisted Igor’s perspective is, you and Igor will agree
about these properties. A change of the form A 7→ P−1AP is called conjugation or a
basis-change of A.

So far as we can tell, physical laws do not have preferred coordinate systems.1 Therefore,
if mathematics is to be applied to science, we care primarily about those properties that are
invariant under conjugation. The most significant of these properties are the final topics in
this course.

1Actually, the most recent scans of the cosmic microwave background radiation suggest that there is giant
asymmetry, with one area of the sky being significantly colder than the rest, so I guess you could call that
“up.” The meaning of this remains to be seen! Another counterexample is the 2nd law of thermodynamics,
meaning that closed systems have a forward-time arrow. The only other counterexample I know of is that
all biologically produced organic compounds are right-handed, which suggests that all current life on Earth
originated at a single chemical event. If such an event occurred multiple times and if its consequences were
still here, we’d expect to see a random mix of right- and left-handed compounds. When we make organic
compounds in lab environments, they generally come out evenly distributed between right- and left-handed.
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Linear Algebra I: The Good Stuff 2 DETERMINANTS

2 Determinants

What does a linear transformation F : V → V look like?
Even for F : R2 → R2, cannot draw a complete graph in any reasonable way! However, if

we choose basis vectors, we can see where they go. Consider V = W = R2 with the standard
basis, and suppose F is the transformation represented by the matrix

A =

[
2 1
1 −1

2

]
(2.1)

We can see that v = 3e1 + 4e2 goes to

F (v) = 3F (e1) + 4F (e2) = 3

[
2
1

]
+ 4

[
1
−1

2

]
= 10e1 + 1e2 (2.2)

We can see all of this in one picture:
v

e2

e1

v

F (e2)

F (e1)e2

e1

Notice that all of the geometry here is described by the orange boxes. In the domain, the
orange box is the rectangle given by the basis vectors. In the range, the orange box is the
quadrilateral described as the image of the basis vectors. Certainly, its area has changed,
but also the orientation has changed: you rotate anticlockwise from e1 to e2, but you rotate
clockwise from F (e1) to F (e1)

2.1 Motivating Idea

If we use the same basis for the domain and range, how do the volume and orientation of an
n-prism change through a linear transformation F : V → V ?

To answer this question, let’s choose a basis and represent F by an n × n matrix A.
Then the columns of A are the images of the domain’s basis, so we are considering the prism
described by the columns of A, and we want to study this function, which we call “the
determinant of A.”

|A| = “the volume of the image of the basis n-prism, signed by orientation.”

2.2 Properties and Uniqueness

Here are some observations
:::
Ex

::::
2.1: (which you should confirm)
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2 DETERMINANTS Linear Algebra I: The Good Stuff

1. If E is an elementary row operation that swaps two rows, then |EA| = −|A|.

2. If E is an elementary row operation that re-scales a single row by c, then |EA| = c|A|.

3. If E is an elementary row operation that adds a replaces ρi with ρi + cρj, then
|EA| = |A|.

4. |I| = 1.

5. If A has a row of 0s, then |A| = 0.

Lemma 2.1. Let Mn denote the space of all n × n matrices. Suppose that det :Mn → R
is a function with the properties listed in part 2.2. Then det(A) = |A| for all A ∈ Mn. In
other words, these properties can be taken as the definition of a function called det(A), and
in fact detA and |A| are the same function.2

Proof. Suppose that det and d̂et are two functions that satisfy the properties above. Suppose
that A is some matrix. Our goal is to show that det(A) = d̂et(A) for all A.

Let U denote the reduced row-echelon form of A. Recall that this is unique, and there is
some sequence of elementary row operations E1, E2, . . . , Er such that

ErEr−1 · · ·E2E2A = U and A = E−11 E−12 · · ·E−1r−1E−1r U. (2.3)

(The sequence of row-operations is not unique, but this will not matter.) If A is degenerate,

then U has a row of zeros and the properties mean det(U) = 0 = d̂et(U). If A is nondegen-

erate, then U = I and the properties mean det(U) = 1 = d̂et(U). Now, working from the
right, we apply the inverse elementary row-operations to U one-by-one. Each of these either
changes the sign or scales or does nothing, but it does the same thing to both det and d̂et
until we finish.

We will write either detA or |A| interchangeably based purely on aesthetics.3 While our
definition and properties make sense geometrically, we still have a fairly nasty problem of
actually computing |A|. The next three corollaries allow actual computation:

Corollary 2.2. You can compute determinants by doing row-reduction on the fully aug-
mented matrix [A|I] and keeping track of the row operations. See the Example 2.3 below.

Corollary 2.3. |AB| = |A||B|. In particular, detA 6= 0 if and only if A is nondegenerate,
and |A−1| = 1

|A| .

::
Ex

:::::
2.2: Prove this.

Corollary 2.4. If B = P−1AP , then detB = detA.

Therefore, following section 1.7, we see that det is a property of F : V → V that is
invariant under conjugation, so it does not depend on the representation. Hence, you and
Igor agree on detF .

2This is like the famous calculus argument “There is exactly one function, call it exp, with the properties
exp′ = exp and exp(0) = 1. Oh look, exp(x) = ex.”

3. . . much like you’d write exp(x) or ex depending on what looks better on paper.
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Corollary 2.5. detA = detAT .

Proof.
:::
Ex

::::
2.3: First, check this under the additional assumption that A is itself an elementary

row operation, E.
For generic A, decompose it into row operations. This is the same as decomposing AT

into column operations. Since (E1E2)
T = ET

2 E
T
1 and det(E1) = det(ET

1 ), and so on, and
using the multiplication property above. ((detail))

2.3 Example: 2× 2 determinants.

Suppose A =

[
a b
c d

]
. Then we row-reduce the augmented matrix. While doing so, we will

need to divide by some things that better not be zero, but we’ll proceed and account for all
of that at the end:[

a b 1 0
c d 0 1

]
1
a
ρ1−→
[
1 b/a 1/a 0
c d 0 1

]
ρ2−cρ1−→

[
1 b/a 1/a 0
0 (ad− bc)/a −c/a 1

]
a

ad−bcρ2−→
[
1 b/a 1/a 0
0 1 −c/(ad− bc) a/(ad− bc)

]
ρ1− baρ2−→

[
1 0 1/a+ bc

a(ad−bc) −b/(ad− bc)
0 1 −c/(ad− bc) a/(ad− bc)

]
=

[
1 0 d/(ad− bc) −b/(ad− bc)
0 1 −c/(ad− bc) a/(ad− bc)

]
(2.4)

There were four row operations. Working backwards from det I = 1, we get

detA = a

(
1

(
ad− bc

a
(1 (det I))

))
= ad− bc (2.5)

Moreover, we now know that A−1 = 1
ad−bc

[
d −b
−c a

]
In order to do this computation, we needed to divide by a and ad − bc. If a = 0 and

c 6= 0, then we could have swapped rows and multiply det(A) by (−1). If a = c = 0, then A
was degenerate and we know detA = 0 anyway. If ad− bc = 0, then this reduction does not
work; however, reexamining the context of the problem, this just says that “a degenerate
matrix cannot be reduced to the identity,” which we already knew!

In short, without using any trigonometry, we now know that the quadrilateral with sides
(a, c) and (b, d) has (signed) area ad− bc.

Corollary 2.6. Suppose that A is an n× n matrix of the form

A =


1 0 · · · 0
0
... (B)
0

 (2.6)
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2 DETERMINANTS Linear Algebra I: The Good Stuff

where B is an (n−1)× (n−1) matrix. Then detA = detB.

Proof. This is a n-prism with “(n−1) base” detB and height 1.

Corollary 2.7. Using linear combinations, we can compute the detA in terms of its (n−1)×
(n−1) submatrices, and each of those in terms of its (n−2) × (n−2) submatrices, and so
on. Eventually you get to 2 × 2 matrices, which we understand. This is called “cofactor
expansion.”

The formula is detA =
∑

j(−1)1+jA1,jmi,j where mi,j = det(Mi,j) is the determinant of
the (n − 1) × (n − 1) sub-matrix opposite A1,j. Either mi,j or Mi,j is sometimes called a
“minor.”

Some people (with no taste) take this as the definition. From our perspective, the proof
is simply that this formula satisfies the properties of the determinant, and the determinant
is the only function with those properties.

::
Ex

:::::
2.4: For 3 × 3 matrices, verify that this definition satisfies all of the properties of a

determinant, so it must be the determinant.
Instead of using the first row, you can use a similar expansion for any row or any column.

2.4 Example: Computing Higher Determinants

Consider the matrix A =

3 4 6
2 1 2
0 −1 5

 and write the co-factor formula for the top row,

(3, 4, 5). The submatrix opposite A1,1 = 3 is M1,1 =

[
1 2
−1 5

]
, so m1,1 = 7. The submatrix

opposite A1,2 = 4 is M1,2 =

[
2 2
0 5

]
, so m1,2 = 10. The submatrix opposite A1,3 = 6 is

M1,3 =

[
2 1
0 −1

]
, so m1,3 = −2. Therefore the determinant is

detA = 3(7)− 4(10) + 6(−2) = 21− 40− 12 = −31.

Alternatively, you could do this using row operations: 1 0 0
−1 1 0
0 0 1

1 0 0
0 1

2
0

0 0 1

1
3

0 0
0 1 0
0 0 1

3 4 6
2 1 2
0 −1 5

 =

1 4/3 2
0 5/6 −1
0 −1 5

 (2.7)

This is of the form E3E2E1A = B, so detB = detE3 detE2 detE1 detA = 11
2
1
3

detA. Then,
apply column operations to clear out the first row:1 4/3 2

0 5/6 −1
0 −1 5

1 −4/3 0
0 1 0
0 0 1

1 0 −2
0 1 0
0 0 1

 =

1 0 0
0 5/6 −2
0 −1 5

 (2.8)

This is of the form C = BF1F2, so detC = detB detF1 detF2 = detB. Now, C is of the
form in the corollary, so detC = −31

6
, and detA = −31.
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Notice that neither F1 nor F2 required any scaling, since that was already handled by E2

above. Therefore, the column operations are not actually necessary, as expected from the
co-factor formula.

Corollary 2.8. The following matrices have an easy-to-compute determinant: diagonal ma-
trices; upper-triangular matrices, lower-triangular matrices; matrices one of whose rows or
columns is mostly zeroes.

::
Ex

:::::
2.5: Write down a (nonsingular) 4× 4 matrix of each kind, and compute its determi-

nant.

::
Ex

:::::
2.6: Compute several random 3 × 3 and 4 × 4 determinants. Do each of them three

times: once by hand using Gaussian elimination, once by hand using the co-factor formula,
and once using a computer algebra system. Most people prefer the latter method.
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3 Eigenvalues and Eigenvectors

What are the most useful numbers? Probably 0 and 1. What are the most useful functions?
Probably f(x) = x and f(x) = ex. Each of these is an example of a fixed point for some
operation. For example, we like ex primarily because ∂

∂x
ex = ex. It is fixed or preserved by

the derivative transformation. That also means that ∂
∂x
f(x) = λf(x) for any f(x) = eλx

with constant λ, which is nearly as nice.
If we want to understand a certain transformation, a lot can be learned by studying the

objects it preserves, F (v) = v. There are a few caveats to keep in mind: We can only say
“F (v) = v” if the domain and range of F are the same space, so F : V → W=V . We already
know that F (0) = 0 for any linear transformation, so we don’t care about v = 0. Also, just
like the example f(x) 7→ λf(x) above, we want to allow pure re-scaling of vectors, so we’ll
examine F (v) = λv. This means that we really care about “directions that are preserved”
not “vectors that are preserved.”

Definition 3.1. Suppose that F : V → V . Suppose that λ is a number and v is a non-zero
vector such that F (v) = λv. We call v an eigenvector4 The set of all eigenvalues is called
the spectrum of F .

This definition does not rely on bases and matrices. It is purely a property of the linear
transformation F . We will explore this soon.

It turns out that it is easier to first find λ, then find v afterwards.

3.1 Finding Eigenvalues

Suppose that F : V → V is represented by A when using a basis (αi) for both the domain
and range. Now, suppose that Av = λv has a non-zero solution, v. Then 0 = Av − λv =
Av−λIv = (A−λI)v, so the matrix (A−λI) must be degenerate. Therefore, det(A−λI) = 0.
This is very useful because we can treat λ as a variable, and solving det(A− λI) = 0 for λ
is “just” the classic problem of finding roots of polynomials.

Once you know an eigenvalue, λ, you can find the corresponding eigenvector by fixing
that λ and solving the homogeneous system (A− λI)v = 0 in the normal way.

Lemma 3.2. If λ = 0 is an eigenvalue of F , then F is not an isomorphism.

Proof. Read the previous paragraph, setting λ = 0.

Here is a complete example. Suppose that (in some basis) F is given by the matrix

A =

1 1 1
2 2 2
3 3 3

 , so (A− λI) =

1− λ 1 1
2 2− λ 2
3 3 3− λ

 . (3.1)

So, we find the determinant:

det(A−λI) = (1−λ)(2−λ)(3−λ)+6+6−3(2−λ)−6(1−λ)−2(3−λ) = −λ3+6λ2 = λ2(6−λ)

4Eigen means “own” in German, as in “This is my own favorite sandwich.” The transformation F might
say “this is my own favorite vector.”
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Therefore, the solutions are the eigenvalues λ = 6, λ = 0, and λ = 0. We might say that the
spectrum of F is {0, 0, 6}. Now, let us find the corresponding eigenvectors.

• Consider λ = 6, so we need to solve (A− 6I)v = 0.−5 1 1
2 −4 2
3 3 −3

 −→
1 0 −1/3

0 1 −2/3
0 0 0

 (3.2)

The null-space is the 1-dimensional space:
1/3

2/3
1

 t : t ∈ R

 (3.3)

• Suppose that λ = 0, so we need to solve (A− 0I)v = Av = 0.1 1 1
2 2 2
3 3 3

 −→
1 1 1

0 0 0
0 0 0

 (3.4)

The null-space is the two-dimensional space
−1

0
1

 t+

−1
1
0

 s : s, t ∈ R

 (3.5)

Note! There is a pile of additional examples in Sections 3.4 and 3.5.

3.2 Existence and Uniqueness of Eigenvalues

Definition 3.3. Given a matrix A, the polynomial p(x) = det(A − xI) is called the char-
acteristic polynomial of A. Its roots are the eigenvalues of A.

Lemma 3.4. Any n×n matrix with real or complex entries must have n complex eigenvalues
(counted with multiplicity). If n is odd, then any n×n matrix A with real entries must have
at least one real eigenvalue. If n is even, then an n× n matrix A may or may not have any
real eigenvalues.

Proof. Eigenvalues are found by finding the roots of the characteristic polynomial, whose
coefficients are products and sums of the coefficients of A. Examination of the definition of
the determinant shows that this polynomial has degree n. So, this is a direct application of
the Fundamental Theorem of Algebra.

Theorem 3.5. If F is an isomorphism with an eigenvalue λ, then 1
λ

is an eigenvalue of
F−1.

::
Ex

:::::
3.1: Prove this. Hint: notice that an eigenvector of F is also an eigenvector of F−1.
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Theorem 3.6. If B = P−1AP , then A and B share the same eigenvalues (but the eigenvec-
tors may look completely different, due to the change-of-basis P ).

::
Ex

:::::
3.2: Prove this. Hint: use the characteristic polynomial as in the example above.

This means that eigenvalues are a property of a formal linear transformation F , and they
do not depend on whatever particular basis you may use to write F as a matrix. Hence,
you and Igor will agree on eigenvalues, though you will write the corresponding eigenvector
differently.

::
Ex

:::::
3.3: Look back at matrix A in Equation 3.1, rewrite A for Igor using the change-of-

basis P from Equation 1.16. Verify that Igor’th eigenvalueth are identical to your eigenvalues.

3.3 Eigenspaces

Now that we understand how to understand eigenvalues as the roots of the characteristic
polynomial, we need to turn our attention to the corresponding eigenvectors.

Definition 3.7. Suppose that λ is an eigenvalue of F . Let Kλ = Kλ = {v ∈ V : F (v) = λv}.
This is called the eigenspace associated to the eigenvalue λ. It is the set of vectors with
that particular eigenvalue.

Lemma 3.8. For any λ, the eigenspace Kλ is a vector subspace of V . Moreover, if λ 6= µ,
then Kλ ∩Kµ = 0.

::
Ex

:::::
3.4: Prove this.

Corollary 3.9. Suppose that λ is a non-zero eigenvalue of F . Show that F (Kλ) = Kλ.
In other words, show that F |Kλ is an isomorphism, and if Kλ is dimension r, then Kλ is
represented in any basis by the r × r matrix

λIr =


λ 0 · · · 0
0 λ · · · 0
...

...
. . .

...
0 0 · · · λ

 .

::
Ex

:::::
3.5: Prove this. Hint: The subspace Kλ has a basis. Where does the basis go?

So, V has a collection of subspaces on which the transformation F is “nice.” It would be
awfully convenient if we could decompose the entire space V into spaces on which F is this
nice. This is not always possible, but it is nearly possible. Understanding this is the topic
of the Jordan Canonical Form of a matrix in Linear Algebra II. First, let’s see an example.

::
Ex

:::::
3.6: Consider the matrix

A =

 5 6 4
4 7 4
−11 −13 −9

 .
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Show that A has three distinct eigenvalues, namely −2, 1, 3, and show that A is similar to
the matrix:

B =

−1 0 0
0 2 0
0 0 3


In this exercise, R3 decomposes into three subspaces, K−1, K2, and K3, each of which is a

one-dimensional subspace. By applying a change-of-basis B = P−1AP , we can change these
subspaces to become the three standard lines {te1 : t ∈ R}, {te2 : t ∈ R}, and {te3 : t ∈ R}.

On the other hand, you could have a 3× 3 matrix with exactly one real eigenvalue, as in
the next exercise.

::
Ex

:::::
3.7: Suppose that A is a 3× 3 matrix of the following form where a, b, c, d 6= 0.

A =

a b c
0 a d
0 0 a

 .
1. Prove that A is non-singular.

2. Consider the matrix B = A− aI3. Prove that the matrix B has rank 2 and nullity 1.

3. Prove that the set E = {~v ∈ R3 : A~v = a~v} is a 1-dimensional subspace of R3, and
find a basis.

4. Prove that the matrix B2 has rank 1 and nullity 2.

5. Prove that the set E ′ = {~v ∈ R3 : A2~v − 2aA~v + a2~v = ~0} is a 2-dimensional subspace
of R3 that contains E, and find a basis.

6. Prove that the matrix B3 has rank 0 and nullity 3.

7. Prove that the set E ′′ = {~v ∈ R3 : A3~v − 3aA2~v + 3a2A~v − a3~v = ~0} is all of R3.

Notice that we have a sequence of subspaces of dimensions 0,1,2,3

0 ⊂ E ⊂ E ′ ⊂ E ′′

described as the null-spaces of the matrices A, (A−aI), (A−aI)2 and (A−aI)3. The second
of these, E, is really the eigenspace Ka. The others, E ′ and E ′′, are not really eigenspaces,
but you can see that they are related somehow. This phenomenon is the core of the most
important theorem in Linear Algebra, the “Jordan Canonical Form” which will be a major
focus in Linear Algebra II and is the key to solving differential equations.

Theorem 3.10. Suppose V is an n-dimensional vector space and that F : V → V has n
distinct eigenvalues. Then there is a basis in which F is represented by a diagonal matrix.
Moreover, detF is the product of the eigenvalues.

We see in Exercise 3.3 that the hypothesis of n distinct eigenvalues is not always true.
There are stronger, more nuanced conditions that also imply diagonalizability, but they are
a topic for another day.
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Proof. Each eigenvalue is associated to an eigenvector, and these eigenvectors live in 1-
dimensional subspaces, Kλ1 , Kλ2 , . . . , Kλn which intersect trivially. Therefore, we can
choose one eigenvector for each eigenvalue and use those eigenvector to write F in a basis.
By applying Lemma 3.9 to each eigenspace, this implies that F is represented by a diagonal
matrix in that basis.

3.4 Eigenspace decomposition in two dimensions

In this section, we see several examples of how a 2 × 2 matrix can possibly look when the
space V is decomposed using eigenvectors.

In general, the characteristic polynomial of a 2×2 matrix A =

[
a b
c d

]
is (a−x)(d−x)−

bc = x2 − (a+ d)x+ (ad− bc). This is always a quadratic function, so over the reals is may
have two, one, or zero solutions. In other words, it may factor as (x−λ1)(x−λ2), or it may
factor as (x− λ1)2, or it may not factor at all over R. The vertex is at 1

2
(a+ d).

3.4.1 Two real eigenvalues.

Consider the matrix

A =

[
2 1
3 4

]
. (3.6)

The characteristic polynomial is (2− x)(4− x)− 3 = x2− 6x+ 5 = (x− 1)(x− 5), so A has
two eigenvalues, λ1 = 1 and λ2 = 5. Now we need to find the eigenspaces:

• K1 = {v : (A− λ1I)v = 0}, so we need to solve[
2− 1 1

3 4− 1

] [
v1
v2

]
=

[
0
0

]
, so (3.7)

K1 =

{[
1
−1

]
t, t ∈ R

}
⊂ R2.

• K2 = {v : (A− λ2I)v = 0}, so we need to solve[
2− 5 1

3 4− 5

] [
v1
v2

]
=

[
0
0

]
, so (3.8)

K2 =

{[
1
3

]
t, t ∈ R

}
⊂ R2.

Now, notice that K1 and K2 together span all of R2. In other words, we can apply the

change-of-basis P =

[
1 1
−1 3

]
to rewrite A as

P−1AP =
1

4

[
3 −1
1 1

] [
2 1
4 4

] [
1 1
−1 3

]
=

[
1 0
0 3

]
. (3.9)
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3.4.2 One real eigenvalue.

There are two different types of 2 × 2 matrices that have exactly one eigenvalue. Here are
two simple examples that show the difference. Let

B =

[
7 0
0 7

]
, C =

[
7 1
0 7

]
. (3.10)

Notice that B and C have the same characteristic polynomial p(x) = (7−x)2, whose only
solution is 7. To find the corresponding eigenspaces, we examine the kernels of the matrices
(B − 7I) and (C − 7I).

Of course, (B− 7I) is the zero matrix, so every vector is an eigenvector of B, and we can
take e1 and e2 to be a basis of the eigenspace.

On the other hand, C − 7I is a matrix of rank 1. Its kernel is spanned by e1. The
eigenspace is only one-dimensional.

Therefore, B and C cannot be similar, because they cannot represent the same linear
transformation.

:::
Ex

::::
3.8: Explain why they cannot be similar. Hint: what would an isomor-

phism P do to the eigenspaces?
This problem gets worse in higher dimensions, and it is why the Jordan Canonical Form

theorem, which extends Theorem 3.10, is rather subtle.

3.4.3 Two complex eigenvalues.

Here is an example of a real matrix with no real eigenvalues:

A =

[
0 −1
1 0

]
(3.11)

So,

0 = det(A− λI) = det

[
−λ −1
1 −λ

]
= λ2 + 1. (3.12)

The only possible solutions are ±
√
−1. So, A has two complex eigenvalues but no real

eigenvalues.
What does this matrix do as a transformation FA? Well, FA(e1) = e2, and FA(e2) = −e1,

so this is an anti-clockwise rotation of π
2

in the plane. This is a general phenomenon: pairs
of complex-conjugate eigenvalues correspond to rotations.

::
Ex

:::::
3.9: Find the complex eigenvalues of the matrix A =

[
cos θ − sin θ
sin θ cos θ

]
for an angle θ.

3.5 Eigenspace decomposition in three dimensions

Here are several different “nice” 3× 3 matrices. Each must have at least one real eigenvalue.

:::
Ex

:::::
3.10: Find the eigenvalues and the associated eigenspaces.a 0 0

0 b 0
0 0 c

 ,
a 1 0

0 a 0
0 0 b

 ,
a 1 0

0 a 1
0 0 a

 ,
a 0 0

0 0 −1
0 1 0
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4 Main Theorem

Let F : V → W be a linear transformation where dimV = dimW = n. The following are
equivalent:

1. F is an isomorphism.

2. kerF = 0.

3. imF = W .

4. All eigenvalues of F are non-zero.

5. There is an inverse transformation F−1 : W → V .

Moreover, if A is an n× n matrix that represents F in some bases, these are also equivalent
to those above:

6. The system of linear equations described by A is non-degenerate.

7. The nullity of A is 0.

8. The row-rank and column-rank of A are n.

9. All eigenvalues of A are non-zero.

10. The determinant of A is non-zero.

11. A can be row-reduced to the n× n identity matrix, RA = I.

12. A can be obtained by a product of elementary row operations.

::
Ex

:::::
4.1: Piece together everything you know to prove this.
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