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Abstract. These notes were developed for lectures at the Institute of Mathematics at the Polish Academy of Sciences in September

2016.

Exterior differential systems have been applied with great success to many problems in geometry and analysis. But, the techniques

have changed very little since Cartan, where results are explained by deft manipulation of differential forms. In fact, differential forms

are not the central idea in the theory of exterior differential systems; rather, the central idea is that one can solve differential equations

by studying the geometry of the initial-value problem on particular linear subspaces called integral elements. Differential forms are

merely a computational means to this goal.

In studying the geometry of initial-value problems, some under-appreciated advances have been made in the past 50 years by studying

the parametrization of solutions via the characteristic variety, Ξ. Unfortunately, a lack of introductory resources is a barrier to entry for

individual scholars, and I believe it has been a major impediment to progress in the field.

The goal of these lectures is to lower this barrier by exposing the audience to simplified versions of several key results regarding the

characteristic variety, and to outline how these results could be used to push the frontiers of the field. These key results are:

(i) The incidence correspondence of the characteristic variety

(ii) Guillemin normal form and Quillen’s thesis

(iii) The Integrability of Characteristics (Guillemin, Quillen, Sternberg, Gabber)

(iv) Yang’s Hyperbolicity Criterion

The approach is elementary—a double entendre: First, elementary means that we rely on techniques that should be accessible to

early graduate students. The notation might become complicated, but all results involve explicit matrix arithmetic. We allow ourselves

to choose temporary bases for direct computation of homomorphisms, but we are very careful to avoid splitting short-exact sequences

that might confuse isomorphic-but-distinct spaces. Second, elementary means that we focus on the geometry over integral elements.

The story begins not with wedges and hooks, but with the geometry of the Grassmann manifold and its tautological bundle.

The first “elementary” is important, because it lowers the barrier to explicit construction and allows exploration with computer

algebra systems. The second “elementary” is important, because it guarantees invariance of our results under local diffeomorphism

without additional work.

The required background for these lectures is graduate-level linear algebra (short-exact sequences, dual spaces, the rank-nullity

theorem, tensor products, generalized eigenspaces, as in Artin’s Algebra [Art91] ), the fundamentals of smooth manifolds (tangent spaces,

Sard’s theorem, bundles, as in Milnor’s Topology from the Differential Viewpoint [Mil97]) and basic algebraic geometry (projective

space, ideal, variety, scheme, as in Harris’ Algebraic Geometry, a first course [Har92]). These lectures assume that the audience has a

general cultural awareness of PDE or EDS in some form but the required definitions are provided.
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0. Introduction

Given a system of PDEs, does it have any local solutions to the free Cauchy problem? If so, how many? What is the shape

of the family of local solutions? How can we determine whether two systems of PDEs are “the same” up to local coordinate

transformations? Does the space of all PDEs (up to local coordinate transformation) have any meaningful shape of its own?

These questions are more geometric than analytic, and it is not surprising that the language of ideals, varieties, moduli, bundles,

and schemes come into play. The following sections in Part I fix notation and remind the reader of the basic structures necessary to

study EDS.

Section 1 introduces tableaux, from the perspective of basic linear algebra that would be familiar (in some notation or other) to

any undergraduate math major. The promise of EDS is that our motivating questions regarding PDEs can be answered via detailed

consideration of the geometry of tableaux. Sections 2 and 3 build the bridge between tableaux and PDEs. Section 2 introduces the

Grassmann manifold as the geometry of linear subspaces, with emphasis on tangents and intersections. This should be accessible

to any graduate student who has had an introductory course on manifolds or in classical algebraic geometry. Finally, Section 3

introduces Exterior Differential Systems as a way to describe varieties in the Grassmann bundle over a manifold, which is our

favorite interpretation of the term “Partial Differential Equation.” Together, these lay the groundwork for the results in Parts II

and III, which are the purpose of this course.

Everything in these pages can be found in numerous places in the literature, and I have indicated my favorite sources throughout.

As always, it is wise to have Bryant, et al.’s Exterior Differential Systems [BCG+90] and Ivey and Landsberg’s Cartan for Beginners

[IL03] nearby.

The only innovations here are in presentation:

(i) The central topic is the C∞ characteristic variety, not the Cω Cartan–Kähler theorem. This is because I am interested in

the question “what does the family of all PDEs look like?” not “how do I solve this particular PDE?”

(ii) Guillemin normal form plays the central computational role, not differential forms. This is because most researchers outside

the field—and their computer algebra systems—are more comfortable with matrices than with exterior algebra.

(iii) Exterior differential ideals are not introduced until absolutely needed. This is because many of the essential lemmas depend

only on the geometry of the Grassmann variety, which is the variety of the trivial exterior differential system.

For readability, many proofs are omitted or reduced to discussion in prose. This should not be an impediment to understanding —

most of the proofs are basic linear algebra (in fact, almost all the proofs are the restatements of the rank-nullity theorem), and

details are provided in the references.

Part I. Background Concepts

1. Tableaux and Symbols

Given vector spaces or projective spaces W and V , a tableau is a linear subspace of A ⊂ Hom(V,W ). Tableaux are very simple

objects—every undergraduate encounters the example “r × n matrices form a vector space using the usual matrix operations”—and

a tableau is any subspace of that vector space. We use the notation W ⊗ V ∗ and Hom(V,W ) interchangeably, and eventually we

switch from vector spaces to complex projective spaces for algebraic convenience.

A tableau is the kernel of some linear map σ, called the symbol, whose range is written as H1(A). We have a short exact sequence

of spaces:

(1.1) 0→ A→W ⊗ V ∗ σ→ H1(A)→ 0,

where H1(A) is just notation for (W ⊗ V ∗)/A. Let dimA = s and dimH1(A) = t = nr − s.
For example, let W = R3 and V = R3, and consider the tableau A described by

(1.2)

a0 a1 a2
a1 a2 a3
a2 a3 a4

 .
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The symbol σ consists of four conditions on a 3× 3 matrix (πai ):

0 = π2
3 − π3

2 ,

0 = π1
3 − π3

1 ,

0 = π2
2 − π3

1 ,

0 = π1
2 − π2

1

(1.3)

1(a). Rank-One Ideal. The fundamental theorem of linear algebra states that any homomorphism π ∈W ⊗ V ∗ has a well-defined

rank. Thus, for any tableau A ⊂W ⊗ V ∗, we could ask how rankπ varies across π ∈ A. For our purposes, the most important case

is rankπ = 1.

The space W ⊗ V ∗ admits the Rank-One Ideal, R, which is irreducible and generated by all 2× 2 minors
{

0 = πai π
b
j − πaj πbi

}
in

any basis. This is a homogeneous ideal, so we may consider the rank-one cone in vector space or the rank-one variety in projective

space. For any A, we define C ⊂ A as the variety C = A ∩Var(R)—the set of matrices in A that are also rank-one—defined by the

ideal A⊥ + R.

In the example (1.2), C can be parametrized as matrices of the form

(1.4)

 λ4 λ3τ λ2τ2

λ3τ λ2τ2 λτ3

λ2τ2 λτ3 τ4

 =

λ2λτ
τ2

⊗ (λ2 λτ τ2
)
,

which can be interpreted as the rational normal Veronese curve1,

(1.5) [1 : τ : τ2 : τ3 : τ4] ⊂ P4 ∼= PA.

Moreover, the projection of C to PV ∗ is another rational normal curve,

(1.6) [1 : τ : τ2] ⊂ P2 ∼= PV ∗.

This toy example plays a crucial role in applications for hyperbolic and hydrodynamically integrable PDEs [FHK09, Smi09].

1(b). Generic Bases. For a particular homomorphism B : Cr → Cp, there are various “good” bases to express B; when B is

written in a “good” basis, we say it is in a normal form. The first example is to choose a basis of W via Gaussian elimination2 such

that B is in row-echelon form. A more sophisticated option is the singular-value decomposition, which requires bases of both Cr∗ and

Cp. In the case p = r, the best option is usually Jordan normal form, which arises by solving the generalized eigenspace problem.

Given a tableau A ⊂W⊗V ∗, we are curious whether we can construct bases that are “good” simultaneously for all homomorphisms

in the tableau. This situation is considerably more complicated than the situation of a single homomorphism, but we arrive at a

satisfying answer in Section 5. Here is the first step:

In any bases of V ∗ and W , the tableau A is a space of r× n matrices only s of whose entries are linearly independent. That is, in

a given basis, we can consider the entries π 7→ πai as elements of V ∗, just as we think of the component v1 as being a linear function

on v ∈ Rn, using some basis. Across all bases of V ∗, there is a maximum number of independent entries that can occur in column 1;

call that number s1. (In a measure-zero set of bases of V ∗, the number of actual independent entries in the first column may may be

less than s1.) Once those independent entries are accounted for, there is a maximum number s2 of new independent entries that can

occur in the second column. (In a measure-zero set of bases of V ∗ that achieve s1 in column 1, the number of actual independent

entries in the columns 1 and 2 may be less than s1 + s2.) Continuing in this way, we have si as the number of new independent

entries in the ith column achieved for almost-all bases of V ∗. Note that s1 ≥ s2 ≥ · · · ≥ si, since otherwise the maximality condition

would have been violated in an earlier column.

Eventually, we have reached s1 + s2 + · · · = s, so there is some maximum column ` ≤ n such that s` > 0, where the last generator

appears. So,

s = s1 + s2 + · · ·+ s` + s`+1 + · · ·+ sn

= s1 + s2 + · · ·+ s` + 0 + · · ·+ 0.
(1.7)

The index ` is called the character of A, and the number s` is called the Cartan integer of A. The tuple (s1, . . . , s`) gives the Cartan

characters of A.

Permanently reserve the index ranges

λ, µ ∈ {1, . . . , `}
%, ς ∈ {`+ 1, . . . , n}
i, j ∈ {1, . . . , n}
a, b ∈ {1, . . . , r}

(1.8)

A basis3 (ui) = (u1, . . . , un) of V ∗ is called generic if its characters achieve the lexicographical maximum value (s1, s2, . . . , sn).

Almost all bases of V ∗ are generic. Given a basis (ui) of V ∗, a basis (za) = (z1, . . . , zr) is called generic if the first si independent

entries in column i are independent.

1 For more on Veronese curves and the related Segre embeddings, see [Har92, Sha94].
2Algorithmically, this is usually accomplished using improved Gram-Schmidt or Householder triangularization. See [TB97].
3This notation indicates an ordered basis, not a vector. Each ui is an element of V ∗.
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s`

s1

sλ

si

1 λ i ` n

πbλ

πai

Ba,λ
i,b

Figure 1. A tableau in coordinates, from [Smi15].

s`

s1

sλ

si

1 λ i ` n

W−
λ

W−
i

0

Bλi

Figure 2. The map Bλi for a tableau in generic bases.

Choose generic a basis (ui) = (u1, . . . un) for V ∗, and let (ui) = (u1, . . . , un) be its dual basis for V . Choose a generic

basis (za) = (z1, . . . , zr) for W , and let (za) = (z1, . . . , zn) be its dual basis for W ∗. An element of the tableau is written as

π = πai (za ⊗ ui) ∈W ⊗ V ∗. Because the bases are generic, the symbol map σ can be written as

(1.9)
{

0 = πai −B
a,λ
i,b π

b
λ

}
si<a

.

(Compare to the example (1.3), which is not written in generic bases. If you exchange columns 2 ↔ 3 and rows 1 ↔ 3, then it

becomes generic.) It is implicit that Baλi,b = 0 for a ≤ si and for b ≥ sλ and for i < λ. That is, entries to the lower-right are written

as linear combinations of the entries in the upper-left using the coefficients Ba,λi,b , as in Figure 1.

Another way to interpret the symbol coefficients Ba,λi,b is as a map from the generating entries to the other entries. That is,

consider the map B ∈ V ∗ ⊗ V ⊗W ⊗W ∗ ∼= End(V ∗)⊗ End(W ) defined by

(1.10)
∑
a≤si

δλi δ
a
b (za ⊗ zb)⊗ (ui ⊗ uλ) +

∑
a>si

Ba,λi,b (za ⊗ zb)⊗ (ui ⊗ uλ).

Equation (1.10) is the formal inclusion A→W ⊗ V ∗ in the defining exact sequence (1.1).

By fixing ϕ ∈ V ∗ and v ∈ V , we obtain an endomorphism B(ϕ)(v) : W → W defined by the column relations of (πai ), as in

Figure 2. We use the shorthand Bλi for B(uλ)(ui), but note that this is not quite the same as Ba,λi,b za ⊗ zb because of the identity

term in Equation (1.10).

Let U denote the subspace of V spanned by u1, . . . , u`, so that U⊥ is spanned by u`+1, . . . , un ∈ U∗. Let Y denote the subspace of

V spanned by u`+1, . . . , un, so that Y ⊥ is spanned by u1, . . . , u`. Then we have the decompositions V = U ⊕ Y and V ∗ = Y ⊥ ⊕U⊥
and the identifications Y ⊥ ∼= U∗ and U⊥ ∼= Y ∗.

It is apparent from (1.10) that B(ϕ) = B(ϕ̃) if ϕ− ϕ̃ ∈ U⊥; that is if ϕ% = ϕ̃% for all % ≥ `+ 1, so we usually consider B(ϕ) only

for ϕ ∈ Y ⊥.

For our purposes, a “good” basis is one which makes the endomorphisms Bλi as structurally similar as possible. For any i, let

W−
i denote the span of {z1, . . . , zsi}, Let W+

i denote the span of {zsi+1, . . . , zr}. The map Bλi : W →W has support W−
λ ⊂W ,

and its image lies in W+
i ⊂W . In order to build this basis from this generic basis, we impose in Section 1(c) additional conditions

on the images of the endomorphisms Bλi .
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s`

s1

sλ

si

1 λ i ` n

W−
λ

W−
i

W
+ i
∩
W
− λ

W
+ i
∩
W

+ λ

0

Bλi

0

Figure 3. The map Bλi for an endovolutive tableau.

1(c). Endovolutive Tableaux. A tableau A expressed in bases (ui) and (za) is called endovolutive4 if Ba,λi,b = 0 for all a > sλ.

That is, endovolutive means that Bλi is an endomorphism of W−
λ ⊂W , as in Figure 3.

When considering endovolutive tableaux, it useful to arrange the symbol endomorphisms as an `× n array of r × r matrices:

(1.11)



Is1 B1
2 B1

3 B1
4 · · · B1

` · · · B1
n

0 Is2 B2
3 B2

4 · · · B2
` · · · B2

n

0 0 Is3 B3
4 · · · B3

` · · · B3
n

0 0 0 Is4 · · · B4
` · · · B4

n

. . . Bλi
...

0 0 0 0 0 Is` · · · B`n


In (1.11), endovolutivity means that each r × r sub-matrix in row λ is 0 outside the upper-left sλ × sλ part. If a tableau is

endovolutive in certain bases for W and V ∗, then it is also endovolutive under any upper-triangular change-of-basis for ui 7→ giju
j .

Under such a basis change, the columns of (πai ) are linear combinations of the ones to their right, and the sub-matrices in (1.11)

change by the corresponding conjugation. (At this point, experts may wish to jump ahead to Theorem 3.16 and Section 3(d).)

Because each Bλi is an endomorphism of a particular vector space, it is sensible to consider an eigenvector problem for this map:

For any λ, let

(1.12) W1(uλ) =
{
w ∈W−

λ : Bλµ w = δλµw ∀µ ≤ `
}
.

That is, we want to find the vectors that are preserved by Bλλ but are annihilated by Bλµ for µ 6= λ. More generally, for any ϕ ∈ U∗,
let W−(ϕ) = W−

λ where λ is the minimum index such that ϕλ 6= 0. Also, let

(1.13) W1(ϕ) =

{
w ∈W−(ϕ) :

(∑
λ

ϕλ Bλµ−ϕµI

)
w = 0 ∀µ ≤ `

}
.

Equation (1.13) is really saying that B(ϕ)(·)w is rank-one when restricted to U∗, so we can rewrite it as

(1.14) W1(ϕ) =
{
w ∈W−(ϕ) : z ⊗ ϕ+ Ja% (za ⊗ u%) ∈ Ae, ∃J ∈W ⊗ U⊥

}
.

This space is the focus of [Gui68], and it plays an important part in our story. Unlike W−(ϕ), its definition does not depend on the

basis; its definition depends only on the splitting V = U ⊕ Y . Its dimension is an important invariant.

Lemma 1.15. Suppose that the tableau A admits endovolutive coordinates. For generic ϕ, dim W1(ϕ) = s`.

Lemma 1.15 is the result of a quick rank computation using (1.13). See details in [Smi15].

Our “good” basis will be built on the requirement that the maps Bλi commute on certain combinations of these spaces (and thus

share generalized eigenspaces and Jordan-block normal form there). That is, we are aiming for something like the commutative

subalgebras seen in [Ger61] and [GS00]. Endovolutivity allows surprisingly direct computation of the desired conditions. For more

detail on endovolutivity, see [Smi15] and the references therein. We return to this topic in Section 3(c).

2. Grassmann and Universal Bundles

The Grassmann variety is the set Grn(X) of n-planes in an (n+r)-dimensional vector space X. It is a smooth projective variety

and a smooth manifold of dimension nr. EDS is a theory of subvarieties of the Grassmann, and this section highlights its most

useful features.
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Gr1(R2)

TeGr1(R2) ∼= (X/e)⊗ e∗

e

ẽ
e⊥

Figure 4. From e, identify a nearby line ẽ in R2 with a relative angle. The map from Te Gr1(R2) ∼= (−∞,∞) to

the neighborhood (−π/2, π/2) of e in Gr1(R2) is arctane. Its inverse is tane.

2(a). Tangent and Arctangent. The tangent space of Grn(X) is easy to understand in the following way. For any e ∈ Grn(X),

choose a basis5 (ui) = (u1, . . . , un) for e, and choose (za) = (z1, . . . , zr) to complete a basis of the entire vector space X. Any

n-plane ẽ near e admits a basis (ũi) = (ũ1, . . . , ũn) that we may assume is related to v by a matrix in reduced column echelon form:

(2.1)
(
ũ1 . . . ũn

)
=
(
u1 . . . un z1 · · · zr

)


1 · · · 0
. . .

0 · · · 1

K1
1 · · · K1

n
...

. . .
...

Kr
1 · · · Kr

n


More succinctly, using the summation convention:

(2.2) ũi = ui +Aai za = δji uj +Ka
i za.

That is, (ũi) and (ui) are related by an (n+ r)× n matrix of rank n whose range 〈ũ1, . . . ũn〉 = ẽ is determined uniquely by the

r × n submatrix (Ka
i ). In this sense, Te Grn(X) is isomorphic to the space of r × n matrices.

However, this isomorphism is not natural for an abstract vector space (without metric) because it depends on a choice of splitting

X = e⊕ (X/e) by choosing the complementary basis (za). To avoid splitting, we can use the dual6 short-exact sequences

0→ e→ X → X/e→ 0

0→ e⊥ → X∗ → e∗ → 0
(2.3)

without splitting. Choose any basis (θa) = (θ1, . . . , θr) of the annihilator space e⊥ = (X/e)∗, and let (za) = (z1, . . . , zr) be the

corresponding dual basis of (X/e). Then, we may take the coefficients Ka
i of

(2.4) K = za ⊗Ka
i (ẽ) = za ⊗ θa(ũi) ∈ (X/e)⊗ e∗

as nr local coordinates on Te Grn(X). Moreover, an explicit choice of bases (ui) for e and (θa) for e⊥ is unnecessary. Instead, we

need only the abstract homomorphism K ∈ (X/e)⊗ e∗, as the space ẽ = 〈(ũi)〉 is invariant under GL(n) transformations on (ui)

and (ũi) as well as GL(r) transformations on θ.

As in Figure 4, the derivative map Grn(X)→ (X/e)⊗ e∗ near e can be seen as a multidimensional generalization of the tangent

function, so the inverse map7 is written arctane : (X/e)⊗ e∗ → Grn(X).

The reader is encouraged to read [MS74, §5] and [KN63] and to search for the terms Plücker embedding and Stiefel manifold for

more detail on this subject.

Remark 2.5. Notice that any linear subspace of (X/e) ⊗ e∗ is a tableau in the sense of Section 1. In some sense, it is the only

example, as arbitrary V and W could be studied by setting X = V ⊕W . Moreover, any smooth submanifold Z ⊂ Grn(X) with

tangent space TeZ ⊂ Te Gr(X) at e ∈ Z gives TeZ as a tableau in (X/e)⊗ e∗. This observation is the heart of the entire subject.

2(b). Polar pairs. Suppose that e, ẽ ∈ Grn(X), and that they share a hyperplane. That is, suppose e′ = e ∩ ẽ and dim e′ = n− 1.

We call the n-planes e and ẽ polar pairs because they are both polar extensions of e′.

Suppose that ẽ is near e in the sense that ẽ = arctane(K) for some K. Let u1 . . . un−1 be a basis for e′, and extend that basis

to a basis u1, . . . , un−1, un for e and to a basis u1, . . . , un−1, ũn for ẽ. Writing (2.2) in this case, it is apparent that only the nth

column of (Ka
i ) is nonzero. That is, the tangent homomorphism K ∈ (X/e)⊗ e∗ is rank-1. It cannot be rank-0 unless e = ẽ.

4The term endovolutive was coined in [Smi15], but the phenomenon was described previously in [BCG+90, Chapter IV§5], [Yan87], and it is certainly

familiar to anyone who was manipulated tableaux of linear Pfaffian systems.
5This notation indicates an ordered basis, not a vector. Each ui is an element of X.
6Recall that (X/e)∗ is canonically isomorphic to e⊥: If [v] = {u+ e} ∈ X/e, then ϕ([v]) = ϕ(v) + 0 is well-defined for all ϕ ∈ e⊥.
7The map arctane is analogous to exponential map expp : TpM → M from Riemannian geometry or Lie group representation theory, except that

arctane does not make explicit use of a metric or group structure.
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e

ẽ

e′

Figure 5. Polar pairs.

Conversely, suppose that K ∈ (X/e)⊗ e∗ is rank-1, and let ẽ = arctane(K). Let e′ = kerK, which is a subspace of e of dimension

n− 1. Any v ∈ e′ is preserved by the map e→ X defined by the matrix in (2.2); hence, e′ ⊂ ẽ.
One can see immediately that this generalizes by replacing 1 with any rank k to obtain a Grassmannian version of the rank-nullity

theorem

Lemma 2.6. If e ∈ Grn(X) and ẽ = arctane(K) and rankK = k, then

dim(e ∩ ẽ) = n− k.

It is useful to rephrase Lemma 2.6 to a coordinate-free setting, as Lemma 2.7. This requires dropping the assumption of nearness,

so it is possible that K is not unique. This is analogous to failure of injectivity at large distances for the exponential map in

Riemannian geometry. Again, the argument is simply a repeated use of the rank-nullity theorem for the short-exact sequences (2.3).

For any e ∈ Grn(X), let Polk(e) = {ẽ ∈ Grn(X) : dim(ẽ ∩ e) = n− k}. Note that Polk(e) is nonempty if and only if k ≤ r.

Lemma 2.7. For any ẽ ∈ Polk(e), the space (ẽ ∩ e)⊥ /e⊥ ⊂ X∗/e⊥ = e∗ has dimension k. The space ẽ/e ⊂ X/e also has dimension

k. This yields the incidence correspondence in Figure 6.

Polk(e)

Grk(X/e) Grk(e∗) ẽ/e

ẽ

(ẽ ∩ e)⊥/e⊥

Figure 6. The incidence correspondence of polar pairs e and ẽ.

Now, reconsider the case k = 1. Then each ẽ ∈ Pol1(e) yields a hyperplane e′ = ẽ ∩ e. The right image (e′)⊥/e⊥ in Figure 6 is

some line ξ ∈ Pe∗. The left image ẽ/e is some line w ∈ P(X/e). So, each ẽ ∈ Pol1(e) yields a rank-one projective homomorphism

w ⊗ ξ ∈ P ((X/e)⊗ e∗). Any element of P ((X/e)⊗ e∗) could be obtained this way by appropriate choice of ẽ.

We can write w⊗ ξ like this: Let (ω1, . . . ωn, θ1, . . . , θr) be a basis for X∗ such that e = ker{θ1, . . . , θr} and e′ = ker{θ1, . . . , θr, ξ}
for some ξ = ξiω

i. Then, ẽ = ker{θ̃1, . . . , θ̃r} for some θ̃a = Jab θ
b +Ka

i ω
i. Because e′ ⊂ ẽ, it must be that

Jab θ
b +Ka

i ω
i ≡ 0 mod {θc, ξ}, so

Ka
i ω

i ≡ 0 mod {θc, ξ}, so

Ka
i ω

i ≡ 0 mod {ξ}.
(2.8)

Hence, each Ka
i ω

i is a multiple of ξ; call it waξ. Note that wa = 0 for all a if and only if ẽ = e, which contradicts our assumption

dim e′ = n− 1. Choose a basis (za) of X/e dual to (θa). Let (ωi) denote the basis of e∗ = X∗/e⊥ induced by wi ∈ X∗, so that ξ

also denotes the image of ξ ∈ X∗. Let w = waza. Then the induced homomorphism

(2.9) K = za ⊗Ka
i ω

i = za ⊗ waξ = w ⊗ ξ ∈ (X/e)⊗ e∗

has rank 1. Each of w and ξ is defined up to scale, so K is well-defined only up to scale, [K] = P ((X/e)⊗ e∗).
It may be that ẽ lies outside the image of the injective map arctane. How then do we interpret K? For some vectors v and ṽ, we

may write e = e′ + 〈v〉 and ẽ = e′ + 〈ṽ〉 and define a curve eλ = e′ + 〈(1− λ)v + λṽ〉 in Grn(X). Even if ẽ = e1 lies outside the

image of arctane, all eλ lie inside the image of arctane for an open ray of sufficiently small λ. Since K is defined only to scale, the

projective homomorphism w ⊗ ξ is shared by the all those eλ. So, the image arctane(w ⊗ ξ) contains an open set of {eλ} where

eλ ∩ e = e′. In Figure 5, eλ is the family obtained by rotating e about the axis e′ toward ẽ.
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Figure 7. A cartoon of the tautological bundle, γ. Here e is a real 2-plane in R3, which can be represented by

a line because Gr2(R3) ∼= P(R3∗). Each γe
∼= P(R2)⊗ C = P(C2) is a Riemann sphere. Thus, γ is depicted as a

bundle of 2-spheres over a hemisphere.

Lemma 2.10. For any w⊗ξ ∈ P ((X/e)⊗ e∗), there exists a ray of K ∈ Te Grn(X) representing w⊗ξ such that each ẽ = arctane(K)

lies in Pol1(e). That is, w ⊗ ξ is represented by Pol1(e) in any open set of Grn(X) containing e. This also holds for any linear

subspace of Te Grn(X) and corresponding submanifold of Grn(X).

This is sufficient for our purposes, but those seeking a more detailed understanding of polar pairs are encouraged to investigate

Schubert varieties—for example in [Rob12]—and the other outgrowths of Hilbert’s 15th problem.

2(c). The Tautological Bundle. Soon, we will consider algebraic equations defined on e∗. To facilitate this, for any e ∈ Grn(X),

we consider the complexified projective space X = PX ⊗ C and its subspace Pe⊗ C. For standard complex projective space, we

write Pd for CPd = P(Cd+1). That is, X ∼= Pn+r−1.

If we consider all such spaces across all e simultaneously, we obtain the tautological bundle8 γ with fiber

(2.11) γe = Pe⊗ C, ∀e ∈ Grn(X),

and its dual γ∗ with fiber

(2.12) γ∗e = Pe∗ ⊗ C, ∀e ∈ Grn(X),

and its annihilator γ⊥ with fiber

(2.13) γ⊥e = Pe⊥ ⊗ C, ∀e ∈ Grn(X),

and its cokernel X/γ with fiber

(2.14) (X/γ)e = P(X/e)⊗ C, ∀e ∈ Grn(X).

See Figure 7. There is a dual pair of short exact sequences of bundles, analogous to (2.3).

0→ γe → X→ (X/γ)e → 0,

0→ γ⊥e → X∗ → γ∗e → 0.
(2.15)

Hence, PTe Gr(X)⊗ C is isomorphic (naturally) to (X/γ)e ⊗ γ∗e. If we choose a section of these sequences, then we obtain dual

bases to establish an (unnatural) isomorphism PX ⊗ C ∼= γe ⊕ (X/γ)e.

One can also consider the frame9 bundle Fγ over Grn(X) associated to γ, whose fiber is all linear isomorphisms

(2.16) Fγ,e = {(ui) : γe
∼→ Pn−1} = {bases of γ∗e} ∼= PGL(n),

and the coframe bundle Fγ∗ over Grn(X) associated to γ∗, whose fiber is all linear isomorphisms

(2.17) Fγ∗,e = {(ui) : γ∗e
∼→ Pn−1} = {bases of γe} ∼= PGL(n).

To write homogeneous algebraic ideals on γ∗e that vary across e ∈ Grn(X), the appropriate ring is therefore

(2.18) S = C[u1, . . . , un], for (ui) a section of Fγ∗ .

8 These are also called universal bundles or canonical bundles. They are analogous to the sheaves O(−1) and O(1), respectively, for varieties in projective

space.
9Some authors might flip the names of the frame and coframe bundles. I tend to choose this notation because the frame bundle is covariant with

diffeomorphisms on the base space, and only contravariant objects get a “co-” prefix. The jargon for duality is always frustrating.
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M p

Grn(TM) Grn(TpM) e

γ γ(p) Pe⊗ C v

⊃

$

⊃⊃

3

3

$ $

3

Figure 8. Tautological bundles over Grassmann bundles over manifolds. Vertical arrows are bundle projections.

2(d). Bundles upon Bundles. If M is a smooth manifold of dimension m = n+ r, then we can form the smooth bundle Grn(TM)

with fiber Grn(TpM). Let $ : Grn(TM)→M denote the bundle projection.

Because (2.3) holds across the bundle for X = TpM , any local section of Grn(TM) can be described by choosing its annihilator

section of Grr(T
∗M), and vice-versa.

For every p ∈ M , its Grassmann fiber Grn(TpM) has a tautological bundle γ(p) with fiber γe(p) = Pe ⊗ C. The total space

Grn(TM) is a manifold in its own right. Hence, we may consider γ as a bundle over the manifold Grn(TM), which is itself a bundle

over M . In other words, we can reinterpret Section 2(c) where Xe = PTpM ⊗C is the fiber of the bundle X over Grn(TM) at e with

$(e) = p. A complete description of some v ∈ γ would be (p, e, v) where u ∈ Pe⊗ C, and e ∈ Grn(TpM), and p ∈M . See Figure 8.

Analogous constructions hold for γ∗, γ⊥, (X/γ), Fγ , and Fγ∗ from Section 2(c). To write homogeneous algebraic ideals on γ∗e that

vary across e ∈ Grn(TM), the appropriate ring is therefore

(2.19) S = C∞(M)[u1, . . . , un]⊗ C, for (ui) a section of Fγ∗ .

2(e). The Contact Ideal. For any e ∈ Grn(TM), consider its annihilator subspace e⊥ ⊂ T ∗pM . There is a corresponding subspace

Je ⊂ T ∗e Grn(TM), defined as

(2.20) Je =
〈
ζ ◦$∗ such that ζ ∈ e⊥

〉
as in Figure 9. If (za) is a basis of e⊥, then we can define a basis of Je by θa = za ◦$∗.

Mp ∈ TpM

Grn(TM)e ∈ Te Grn(TM)

Rr$ $∗

〈(za)〉 = e⊥

〈(θa)〉 = Je

Figure 9. Contact forms on the Grassmann bundle of M .

The differential ideal J ⊂ Ω• (Grn(TM)) generated by 〈θa,dθa〉 from J is called the contact ideal.

Note that, for any (local) section ε : M → Grn(TM), the contact ideal satisfies the universal reproducing property ε∗(J) = ε⊥.

However, even if the topology of M forces the section ε to be defined locally, the module J is defined globally across Grn(TM).

If one were to choose local coordinates (xi, ya) for M and local fiber coordinates (P ai ) for Grn(T(x,y)M) near a particular n-plane

e = ker{dya}, then J is the differential ideal typically written as

(2.21)

{
0 = θa = dya − P ai dxi,

0 = dθa = dP ai ∧ dxi,

where the functions P ai depend on e ∈ Grn(TM).

After reading Section 2(f), compare this coordinate description to your favorite definition of jet space, J1(Rn,Rr). Also, compare

the local fiber coordinates P ai to the tangent coordinates Ka
i from Section 2(a). For some highly amusing applications of the contact

system, see [Gro86].

2(f). Immersions and Frame Bundles. Suppose that ι : N → M is an immersion, and that dimN = n. For any x ∈ N with

ι(x) = p, the push-forward derivative has image ι∗(TxN), which is an n-dimensional subspace of TpM ; hence, ι∗(TxN) ∈ Grn(TM).

Define the map ι(1) : N → Grn(TM) by ι∗(TxN) ∈ Grn(TM). Define the map ι(1) : N → Grn(TM) by

(2.22) ι(1)(y) = ι∗(TyN) = e ∈ Grn(TM),

and note that ι = $ ◦ ι(1).
It is obvious from the definition that ι(1) is also an immersion. Therefore, we can use it to pull-back the tautological bundle γ∗ as

defined in Sections 2(c) and 2(d). Let γ∗N = ι(1)∗γ∗, which has fiber

(2.23) γ∗N,y = γ∗e(p) = Pe∗ ⊗ C = Pι∗(TyN)⊗ C;
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M

Grn(TM)

γ∗

N
ι

ι(1)

Figure 10. Dual tautological bundle pulls back to an immersed submanifold.

that is, γ∗N is identified with PT ∗N ⊗ C via ι∗. See Figure 10.

The immersion ι(1) is called the prolongation of the immersion ι.

Now, consider the contact forms (θa) forms from Section 2(e). For all x ∈ N and all v ∈ TxN , we have

(2.24) ι(1)∗(θa)(v) = θa(ι
(1)
∗ (v)) = za ◦$∗ ◦ ι(1)∗ (v) = za(ι∗(v)) = 0,

which ultimately gives the following lemma:

Lemma 2.25. If ι : N →M is an immersion for dimN = n, then ι(1)∗(J ) = 0. Conversely, if ι′ : N →M (1) is an immersion for

dimN = n satisfying ι′∗(J ) = 0 and such that the image ι′∗(TxN) is transverse to the fiber ker$∗ for all x ∈ N , then there is some

immersion ι : N →M such that ι(1) = ι′.

Nx ∈ TxN

FNu ∈ TuFN

Pn−1$ $∗

(ui)

(ωi)

Figure 11. Tautological Form of the frame bundle of a manifold N .

Moreover, recall that any manifold N of dimension n admits a projective frame bundle $ : FN → N with fiber

(2.26) FxN = {(ui) : TxN
∼→ Pn−1} = {bases of T ∗xN}. ∼= PGL(n),

The total space FN admits a tautological10 1-form ω : TuFN → Pn−1 defined by ωiu = ui ◦$∗ as in Figure 11. It is characterized

by its universal reproducing property η∗(ω) = η for any (local) section η : N → FN . However, even if the topology of N forces the

1-form η to be defined locally, the 1-form ω is defined globally on FN .

For any diffeomorphism f : N → Ñ , there is an induced (covariant) map on the frame bundles f† : FN → FÑ by f† : (ui) 7→
(ui) ◦ (f∗)

−1. Using the universal property, it is easy to prove this lemma, which shows that diffeomorphisms are characterized by

the tautological form on the frame bundle:

Lemma 2.27. If f : N → Ñ is a diffeomorphism, then (f†)∗((̃ω)) = ω. Conversely, if F : FN → FÑ is PGL(n)-invariant

diffeomorphism such that F ∗(ω̃) = ω, then there exists a unique diffeomorphism f : N → Ñ such that f† = F .

Combining the universal properties of the J and ω, we obtain the following theorem telling us what information we can transfer

from Grn(TM) to an immersed submanifold:

Theorem 2.28. If ι : N →M is a smooth immersion, then

• ι(1)∗(J ) = 0, and

• FN = ι(1)∗(Fγ).

Conversely, if ι′ : N → Grn(TM) is a smooth immersion such that

• ι′∗(J ) = 0, and

• FN = ι′∗(Fγ),

then there is some smooth immersion ι : N →M such that ι(1) = ι′.

That is, an immersed submanifold satisfies the contact ideal, which is generated differentially by some annihilator 1-forms (θa)

spanning γ⊥, and its frame bundle is equipped with tautological 1-forms (ωi) spanning γ∗.

10In various references, this 1-form is called the canonical 1-form, the Hilbert 1-form, and the soldering 1-form.
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Remark 2.29. Note the similarity between the universal property of the contact ideal on the Grassman bundle and the universal

property of the tautological 1-form on the frame bundle. Exploitation of this interaction as in Theorem 2.28 has a long and

interesting history.

For example, consider the study of a Lie pseudogroup acting on a manifold M . One option is to differentiate the coordinates of

M repeatedly until differential syzygies of the Lie pseudogroup action can be found in prolonged local coordinates, which are then

converted to a coordinate-free description using the pseudogroup action. The other option is to work on the frame bundle of M

immediately, which is automatically invariant, then prolong as necessary to reveal the syzygies. The latter is used often when the

Lie pseudogroup arises as equivalence of intrinsic G-structures, and the former is used often when the Lie pseudogroup arises from

an extrinsic action on some ambient coordinates. For more on these fascinating and interconnected ideas, I encourage you to read

[Cle], [Olv95], [Val13], and [Gar89]—and the collected works of E. Cartan.

3. Exterior Differential Systems

Let M be a smooth manifold of finite dimension m. An exterior differential system [EDS] on M consists of an ideal I in the

total exterior algebra Ω•(M) that is differentially closed and finitely generated. Differentially closed means that dI ⊂ I. Finitely

generated means that in each degree p, the p-forms in the ideal, Ip = I ∩ Ωp(M), form a finitely generated C∞(M)-module. We

assume that I0 = 0; otherwise, one would restrict to a submanifold defined by those functions. Optionally, we sometimes specify an

independence condition as an n-form ω ∈ Ωn(M) that is not allowed to vanish on solutions.

3(a). Integral Elements and Integral Manifolds. Why would anyone define such an object? In Section 2, we explored the

geometry of the bundle Grn(TM). Exterior differential systems provide a convenient language to study the geometry of smooth

sub-bundles M (1) of Grn(TM).

To be precise, an integral element of I at p ∈ M is a linear subspace e ⊂ TpM such that ϕ|e = 0 for all ϕ ∈ In. That is, the

n-forms in I provide a collection of functions that cut out a variety, Varn(I) ⊂ Grn(TM). These functions vary smoothly in M and

are homogeneous in the fiber variables.

There is a maximal dimension n for which Varn(I) is locally non-empty, which is the case of interest. If an independence condition

ω is specified, we also require ω|e 6= 0, which forces Varn(I) to lie in the open subset of Grn(TM) for which that condition holds.

Because In is finitely generated by smooth functions, there is an open, dense subset Varon(I) ⊂ Varn(I) defined as the smooth

subbundle of Grn(TM) that is cut out smoothly by smooth functions. These are the Kähler-ordinary elements. A single connected

component of Varon(I) is called M (1), and we allow ourselves to redefine M so that $ : M (1) →M is a smooth bundle.

Let s denote the dimension of each fiber of the projection M (1) →M , so t = nr − s is the corresponding codimension of TeM
(1)
p

in Te Grn(TpM). That is, Ae = ker$∗ = TeM
(1)
p is a tableau, and because M (1) is a smooth manifold, we have:

Lemma 3.1. K ∈ Ae implies arctane(K) ∈M (1) near e.

That is, we have a well-defined vector bundle A = ker$∗ ⊂ TM (1) over M (1). So that we may apply the results of Section 1,

we also restrict ourselves to an open subset of M (1) where the Cartan characters of Ae are constant for e ∈ M (1). This is the

assumption that a regular flag of e may be chosen smoothly across e ∈M (1).

Moreover, define the tautological bundles

V = γ|M(1) = {Pe⊗ C},
V ∗ = γ∗|M(1) = {Pe∗ ⊗ C},
W = (X/γ)|M(1) = {P(TpM/e)⊗ C},

V ⊥ = γ⊥|M(1) = {Pe⊥ ⊗ C}

(3.2)

Sometimes, it is convenient to think of A as being a complex projective bundle, in which case we consider it to be a subbundle of

W ⊗ V ∗.
An integral manifold of I is an immersion ι : N → M such that ι∗(ϕ) = 0 for all ϕ ∈ I. (If an independence condition ω is

specified, we require that ι∗(ω) 6= 0, too.) When we are considering a particular M (1) ⊂ Varn(I) as above, we say N is an ordinary

integral manifold provided that ι∗(TM) ⊂M (1). All of the observations from Section 2(f) apply, but ι(1)(N) lies in the submanifold

M (1), and ι
(1)
∗ (TN) lies in the subbundle A. The overall goal is to construct all ordinary integral manifolds of (M, I) through the

careful study of the prolongation M (1).

One reason to define exterior differential systems this way is that the term PDE or system of PDEs is difficult to pin down.

Colloquially, “system of PDEs” usually means a finite set of (hopefully, smooth) equations on some jet space. Because the contact

system J on Grn(TM) implies the notion of jet space, a system of PDEs can be represented as an EDS that is generated by the

contact system along with a finite set of equations defined locally on Grn(TM).

Even by this definition, an exterior differential system could be rather wild; however, in many practical applications, it happens

that I is generated by a finite collection of differential forms of various degrees, so the fiber M (1) is a smooth algebraic variety in

local fiber coordinates near a solution e ∈ Grn(TM).

3(b). Prolongation and Spencer Cohomology. Suppose that ι : N →M is an ordinary integral manifold of I. By Theorem 2.28,

the 1-forms θa spanning Je must vanish for each e ∈ ι(1)(N). The tautological form (ωi) on Fτ pulls back to a nondegenerate frame

(ηi) on N , since ι(1) is an immersion.

Therefore, if ι(1) : N →M (1) actually exists, we have

ι(1)∗(θa) = 0,

ι(1)∗(dθa) = 0,

ι(1)∗(ω1 ∧ · · · ∧ ωn) = η1 ∧ · · · ∧ ηn 6= 0.

(3.3)
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However, working on the frame bundle of M (1), these forms satisfy a more general equation

(3.4) dθa ≡ πai ∧ ωi +
1

2
T ai,j ω

i ∧ ωj , mod {θb}.

For any choice of dual coframe wa ↔ θa for W ↔ V ⊥, we can see that π = πai (wa ⊗ ωi) lies in A. In particular, it must be that

ι(1)∗(πai ) = P ai,jη
j for some function P ai,j that must satisfy P ai,jη

i ∧ ηj = 0, so P ai,j = P aj,i. That is, the homomorphism P ∈ A⊗ V ∗
lies in the fiber over e of the subbundle

(3.5) A⊗ V ∗ ⊂ (W ⊗ V ∗)⊗ V ∗ = W ⊗ (V ∗ ⊗ V ∗).

Moreover, the existence of an immersion ι(1) : N →M (1) requires that the torsion term waT
a
i,j ω

i ∧ ωj is zero; that is, it must be

possible to rewrite πai = πai +Qai,jω
j for Q ∈ A⊗ V ∗ such that any T ai,j term is absorbed. Note that this absorption of torsion is an

algebraic property of the tableau A.

In summary,

Lemma 3.6. Let δ : A ⊗ V ∗ → W ⊗ ∧2V ∗ denote the composition of skewing ⊗2V ∗ → ∧2V ∗ and inclusion A → W ⊗ V ∗, and

write A(1) = ker δ and H2(A) = coker δ:

(3.7) 0→ A(1) → A⊗ V ∗ δ→W ⊗ ∧2V ∗ → H2(A)→ 0.

For any ordinary integral manifold N , the bundle (3.5) lies in A(1), and the pullback of torsion T is zero in H2(A).

Writing δ in a chosen coframe, it is easy to check that

(3.8) dimA(1) ≤ s1 + 2s2 + · · ·+ nsn.

The case of equality is considered in Section 3(c).

The exterior differential system I(1) on M (1) generated as

(3.9) I(1) = 〈θa,dθa〉 = $∗(I) + J

is called the (first) prolongation of (M, I), and we are back where we started in Section 3. We can construct M (2) ⊂ Grn(TM (1)),

and repeat the entire process for E ∈M (2) over e ∈M (1) that was used for e ∈M (1) over p ∈M . Lemma 3.6 essentially says that

A(1) is the tableau TEM
(2). Thus, we can construct M (3) over M (2) and re-apply Lemma 3.6 in that case. By the definition of M (1)

and (3.9), we have

Corollary 3.10. Every ordinary integral manifold N of (M (1), I(1)) is also an ordinary integral manifold of (M, I). However, the

converse might fail, as the smooth connected locus of M (1) may be a strict subset of Varn(I).

Overall, we achieve exact sequences that summarize the entire situation of the tangent spaces of an immersed ordinary integral

manifold N of I, I(1), I(2), . . .

0→ A→W ⊗ ∧1V ∗ → H1(A)→ 0,

0→ A(1) → A⊗ V ∗ δ→W ⊗ ∧2V ∗ → H2(A)→ 0,

0→ A(2) → A(1) ⊗ V ∗ δ→W ⊗ ∧3V ∗ → H3(A)→ 0,

...

0→ A(n−1) → A(n−2) ⊗ V ∗ δ→W ⊗ ∧nV ∗ → Hn(A)→ 0.

(3.11)

The cokernels H1(A), H2(A), . . . , Hn(A) are the Spencer cohomology of the tableau A. Even outside the context of exterior

differential systems, they are defined for formal tableaux A ⊂W ⊗ V ∗ via the exact sequences (3.11) as

(3.12) Hp(A) =
(
A⊗ (⊗p−1V ∗)

)
/ (W ⊗ ∧pV ∗) .

Spencer cohomology finds functional obstructions to the solution of the initial-value problem on M (p) in the form of torsion; this

is explained nicely in [IL03, Section 5.6].

Spencer cohomology was a major focus of the formal study of partial differential equations and Lie pseudogroups in the mid-20th

century; most notably, [Spe62, Qui64, SS65, GQS66, Gol67, Gar67, Gui68, GK68, GQS70]. As it happens, many of the major results

of that era are easy to re-prove under our regularity assumptions on M (1) and using the perspective from Section 1, particularly

when using the involutivity criteria in Section 3(c) that were detailed in [Smi15]. We demonstrate this in Parts II and III.

3(c). Involutivity of Differential Ideals.

Definition 3.13 (Cartan’s test). A tableau A is called involutive if equality holds in Equation (3.8).

Definition 3.14. A tableau A is called formally integrable if Hp(A) = 0 for all p ≥ 2.

Cartan’s test comes from the following consequence of the Cartan–Kähler theorem11

Theorem 3.15. Suppose that (M, I) is an analytic exterior differential differential system, that M (1) is a smooth sub-bundle, and

that the tableau bundle A has constant Cartan characters over M (1). If A is involutive and formally integrable, then for every x ∈M ,

there is an analytic ordinary integral manifold ι : N →M through x. Moreover, such N are parametrized locally by r constants, s1
functions of 1 variable, s2 functions of 2 variables, . . . , s` functions of ` variables.

11See [BCG+90, Chapter III] or [IL03] for more background on the Cartan–Kähler theorem; it is not our focus here.
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Somewhat confusingly, the situation in Theorem 3.15 is called involutivity of I; that is, an EDS might fail to be involutive even if

its tableau is involutive, because there may be nonzero torsion in Hp(A).

For a beautiful interpretation of Cartan’s test that is relevant to the later Sections of this course, read the introduction of [Yan87].

In summary, ordinary integral manifolds are constructed using by decomposing the Cauchy problem into a sequence of steps, each of

which is determined and has solutions using the Cauchy–Kowalevski theorem.

For fixed spaces W and V ∗, involutivity is a closed algebraic condition on tableaux in W ⊗ V ∗. Because the conditions come

from Cartan’s test, which involves W ⊗ ∧2V ∗, it is not surprising that the conditions are quadratic; however, writing down the

precise ideal is a lengthy argument. Doing so was suggested in [BCG+90, Chapter IV§5] and accomplished for general tableaux in

[Smi15] following the outline in [Yan87].

Theorem 3.16 (Involutivity Criteria). Suppose a tableaux is given in a generic basis of V ∗ by (1.10). The tableaux is involutive if

and only if there exists a basis of W such that

(i) Bλi is endovolutive in that basis, and

(ii)
(

Bλl Bµk −Bλk Bµl

)a
b

for all λ < l < k and λ ≤ µ < k and all a > sl.

This theorem is our main computational tool in Part II.

3(d). Moduli of Involutive Tableaux. While it seems like a trivial (if lengthy) computation, consider carefully the meaning of

Theorem 3.16: We can fix r, n, and Cartan characters s1, . . . , sn and then write down an explicit ideal in coordinates whose variety

is all of the involutive tableaux with those characters. Hence, we can use computer algebra systems such as Macaulay2, Magma,

and Sage to decompose and analyze that ideal using Gröbner basis techniques. With enough computer memory, we can answer

the question “What is the moduli of involutive tableaux?” By virtue of Theorem 3.15, this is very close to answering the question

“What is the moduli of involutive PDEs?”

For example, fix r = n = 3 and (s1, s2, s3) = (3, 2, 0). An endovolutive tableau must be of the form

(3.17) (πai ) =

a0 a3 x3a0 + x6a1 + x9a2 + x12a3 + x14a4
a1 a4 x4a0 + x7a1 + x10a2 + x13a3 + x15a4
a2 x0a0 + x1a1 + x2a2 x5a0 + x8a1 + x11a2

 ,

or in block form like (1.11),

(3.18) (Bλi ) =



1 0 0

0 1 0

0 0 1

  0 0 0

0 0 0

x0 x1 x2

 x3 x6 x9
x4 x7 x10
x5 x8 x11


0 0 0

0 0 0

0 0 0

 1 0 0

0 1 0

0 0 0

 x12 x14 0

x13 x15 0

0 0 0




Involutivity is an affine quadratic ideal G on C(x0, . . . , x15) generated by all the terms of B1

2 B2
3−B1

3 B2
2 as

(3.19) G =



x0x3 + x1x4 + x2x5 − x0x11,
x0x6 + x1x7 + x2x8 − x1x11,
x0x9 + x1x10,

x0x12 + x1x13 − x5,
x0x14 + x1x15 − x8.

The complete primary decomposition of this ideal shows two components. The maximal component has dimension 12, and it is

described by the fairly boring prime ideal {x0, x1, x5, x8}. The other component has dimension 11 and its prime ideal is generated

by 27 polynomials. See http://goo.gl/jGTnMU for how to compute this in SageMathCell. To break it down further for intuition,

suppose that B2
3 is in Jordan form, so that x13 = 0 and either (x14 = 1 and x12 = x15) or x14 = 0.

Many of your favorite involutive second-order scalar PDEs in three independent variables live somewhere in this variety; see

Sections 4(c). Up to some notion of equivalence, this is essentially the moduli space of such equations. As seen in Part II, their

characteristic varieties are obtained by combining G with the rank-one ideal R on C(x0, . . . , x15, a0, . . . , a4).

However, there is still some ambiguity to be resolved, as it may be that a given abstract tableau admits several endovolutive

bases with apparently distinct coordinate descriptions.

3(e). Cauchy retractions. Before proceeding to Part II, it is worthwhile to mention Cauchy retractions, which are much simpler

than—and quite distinct from—elements of the characteristic variety. To confuse matters, many references call these “Cauchy

characteristics.” For any differentially closed ideal I ⊂ Ω•M , the Cauchy retractions are the vectors that preserve I; that is,

g = {v ∈ TM : v I ⊂ I} Because I is differentially closed, the annihilator bundle g⊥ ⊂ T ∗M is the smallest Frobenius ideal in

Ω•(M) that contains I. Then, for any integral manifold ι : N →M , the subspaces g ∩ ι(1)(N) form an integrable distribution; that

is, g⊥N is Frobenius as well [Gar67].

Because g⊥ is a Frobenius system—a system of ODEs—it is common to redefine (M, I) so that it is free of Cauchy retractions

before proceeding to study its integral manifolds. The separation between g⊥ and the characteristic variety Ξ is explored further in

[Smi14].

http://goo.gl/jGTnMU
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Part II. Characteristic and Rank-One Varieties

Thank you for taking the time to read the enormous amount of background in Part I.

Here we stand: We have an exterior differential system I on M with independence condition ω; perhaps this EDS arose from a

system of PDEs on M . That EDS yields a smooth subbundle M (1) ⊂ Grn(TM), where any e ∈M (1) is an integral element of the

original EDS. As a manifold in its own right, M (1) is equipped with tautological bundles V , V ∗, W , and A with fibers

Ve = Pe⊗ C,
V ∗e = Pe∗ ⊗ C,
We = P(TpM/e)⊗ C, and

Ae = PTeM (1)
p ⊗ C,

(3.20)

respectively. Moreover, A is a subbundle of W ⊗ V ∗, so it is a tableau bundle. Its symbol σ gives a short-exact sequence of bundles:

(3.21) 0→ A→W ⊗ V ∗ σ→ H1(A)→ 0.

An integral manifold is an immersion ι : N → M such that ι∗(TpN) ∈ M (1)
i(p) for all p ∈ N . Let ι(1) : N → M (1) denote the map

p 7→ e = ι∗(TpN).

The reader will note that we never assumed that I is a linear Pfaffian system. Moreover, we never prolonged the EDS; that

is, we never built an ideal I(1) on M (1) using the contact system J . Instead we are working with the tautological bundle W per

Remark 2.29.

As you read this part, compare it to [IL03, Section 4.6] and [BCG+90, Chapter V].

4. The Characteristic Variety

The original motivation for the characteristic variety is to see where the initial-value problem becomes ambiguous.

4(a). via Polar Extension. For an integral element e′ ∈ Varn−1(TM), we consider its space12 of integral extensions, called the

polar space,

(4.1) H(e′) = {v : e = e′ + 〈v〉 ∈ Varn(I)} ⊂ TM

and the polar equations comprise its annihilator,

(4.2) H⊥(e′) = {e′ ϕ : ϕ ∈ In} ⊂ T ∗M.

The polar rank is r(e′) = dimH(e′)− dim e′ − 1. If r(e′) = −1, then e′ admits no extensions. If r(e′) = 0, then e′ admits a unique

extension to some e ∈ Varn(I).

The case of interest is r(e′) > 0, meaning that e′ admits many extensions, so the initial value problem from e′ to e is ambiguous.

For any e ∈M (1), we can identify a hyperplane e′ ∈ Grn−1(e) with ξ ∈ Pe∗ via e′ = ker ξ. Because e ∈M (1) ⊂ Grn(TM) where n is

the maximal dimension of integral elements of I, the function r cannot be positive on an open set of Pe∗, so the case r(e′) > 0 is

a closed condition. Moreover, the function r : Pe∗ → N is the rank of a linear system of equations, so it defines a Zariski-closed

projective algebraic variety. We choose to study that algebraic variety over C. Hence, the typical definition of the characteristic

variety of e is

(4.3) Ξe = {ξ ∈ Pe∗ ⊗ C : r(ξ⊥) > 0} ⊂ γ∗e.

Since we wish to study the ambiguity of the initial-value problem, we want to assign multiplicity to each ξ ∈ Ξe, based somehow on

the structure of the space H(ξ⊥) and related to r(ξ⊥). This definition is refined in Section 4(b).

4(b). via Rank-1 Incidence. Section 2(b) provides another interpretation of the initial-value problem that is much more convenient

than (4.3).

Fix e ∈ M (1), and suppose that both e and ẽ are integral extensions of e′ = ker ξ for some ξ ∈ e∗. That is, ẽ ∈ Pol1(e) and

ξ ∈ Ξe. Hence, Lemma 2.7 yields a particular rank-1 projective homomorphism w ⊗ ξ ∈W ⊗ V ∗. Because H(e′) is a vector space,

Lemma 2.10 allows us to assume that ẽ lies near e in the open connected set M (1) of Varn(I). Therefore, any such w ⊗ ξ lies in the

tableau Ae ⊂W ⊗ V ∗.
On the other hand, for fixed e and ξ, there may be various distinct ẽ yielding linearly independent w. With Figure 6 in mind, it

is easy to see that dim{w ∈ TpM/e : w ⊗ ξ ∈ A} equals r(ξ⊥).

Recall the rank-one ideal R from Section 1. Here it applies to vector bundles. The rank-one subvariety of the tableau is the set13

(4.4) C = A ∩VarR = A ∩ {w ⊗ ξ : w ∈W, ξ ∈ V ∗}.

As a set, the characteristic variety Ξ is the projection of C to V ∗. More precisely, Ξ is the scheme14 defined by the characteristic

ideal M on V ∗ that is obtained from the rank-one ideal on W ⊗ V ∗ in the following way: For any ξ ∈ V ∗, define σξ : W → H1

by σξ(w) = σ(w ⊗ ξ). Note that dim kerσξ = r(ξ⊥). Then C is the incidence correspondence15 of Ξ for the symbol map σξ. See

Figure 12.

12The polar space is a vector space thanks to the assumption that In is a finitely-generated C∞(M)-module, because that assumption implies that the

polar equations over p ∈M are a linear subspace of T ∗pM .
13The variety C is really just a set, not a scheme. Any matrix is either rank-one or not. Any matrix is either in the tableau or not.
14We must study Ξ along with its various components and multiplicities, so it is better to think of it as a scheme or ideal than as a simple-minded

variety.
15 For more background on the utility of incidence correspondences in algebraic geometry, I recommend the lecture series [Har13], which I had the

pleasure of attending during my time at Fordham University.
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C

Gr•(W ) Ξ kerσξ

{w ⊗ ξ}

ξ

Figure 12. The rank-one variety C is the incidence correspondence for the characteristic scheme Ξ.

This interpretation is amazing. Suddenly, two simple ideas—tableaux of matrices and rank-one matrices—come together to give a

concise description of the most subtle structure in classical PDE theory.

4(c). Example: The Wave Equation. Consider the PDE u11 + u22 = u00. To do this, we consider the manifold M = R3+1+3 =

J1(R3,R) with coordinates (x1, x2, x3, u, p1, p2, p3). Consider the

We work on the space M ∼= R3+1+3 with coordinates (x1, x2, x3, u, p1, p2, p3). The corresponding exterior differential system is

generated by

(4.5) d


θ0

θ1

θ2

θ3

 ≡


0 0 0

π1
1 π1

2 π1
3

π2
1 π2

2 π2
3

π3
1 π3

2 π3
3

 ∧
ω1

ω2

ω3

 mod {θ0, θ1, θ2, θ3}

where π1
2 = π2

1 , π1
3 = π3

1 , π2
3 = π3

2 , and π3
3 = π1

1 + π2
2 .

Changing bases, this tableau is equivalent to an endovolutive one of the form

(4.6) (πai ) =

a0 a3 a4
a1 a4 a2 + a3
a2 a0 a1


Or in block form

(4.7) (Bλi ) =



1 0 0

0 1 0

0 0 1

 0 0 0

0 0 0

1 0 0

 0 0 0

0 0 1

0 1 0


0 0 0

0 0 0

0 0 0

 1 0 0

0 1 0

0 0 0

 0 1 0

1 0 0

0 0 0




Note that

B1
2 B2

3−B1
3 B2

3

=

0 0 0

0 0 0

1 0 0

0 1 0

1 0 0

0 0 0

−
0 0 0

0 0 1

0 1 0

1 0 0

0 1 0

0 0 0


=

0 0 0

0 0 0

0 1 0

−
0 0 0

0 0 0

0 1 0

 =

0 0 0

0 0 0

0 0 0

 ;

(4.8)

in particular, rows a > s3 = 0 are all zero, so the system is involutive by Theorem 3.16.

The rank-one portion cone is

a0a4 − a1a3
a0a0 − a2a3
a0a1 − a2a4

a1a1 − a2a2 − a2a3
a3a1 − a0a4

a3a2 + a3a3 − a4a4
a4a1 − a0a2 − a0a3

(4.9)

After a simple change of basis, this becomes the example (1.2) – (1.4).

5. Guillemin Normal Form and Eigenvalues

In this section, we reinterpret C and Ξ as properties of the endomorphisms Bλi . Our main computation tool is the structure of an

endovolutive tableau discussed in Section 1(c), where W and V and A are now the projective bundles over M (1).

The incidence correspondence of Figure 12 is rephrased in Lemma 5.1.

Lemma 5.1. If ξ ∈ Ξ, v ∈ V , and w ∈ kerσξ ⊂W , then

(5.2) B(ξ)(v)w = ξ(v)w.

In particular, w is an eigenvector of B(ξ)(v) for all v.
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Proof. Set π = w ⊗ ξ ∈ C ⊂ A, so πai = waξi for all a, i, and this π must satisfy the symbol relations (1.9). In particular,

waξi = Ba,λk,bw
bξλ for a > si. Therefore

B(ξ)(v)w =
∑
a≤si

ξiu
iwaza +

∑
a>si

Ba,λi,b w
bξλu

iza

=
∑
a≤si

ξiu
iwaza +

∑
a>si

ξiu
iwaza

=
∑
a,i

ξiu
iwaza = ξ(v)w.

(5.3)

(Here we see the utility of including the first summand in Equation (1.10).) �

Lemma 5.4 provides a sort of converse.

Lemma 5.4. Suppose that A is an endovolutive tableau. Fix ϕ ∈ U∗ and suppose that w ∈W−(ϕ) such that w is an eigenvector of

B(ϕ)(v) for every v ∈ V . Then there is a ξ ∈ Ξ over ϕ ∈ U∗ such that w ∈W1(ϕ), so w ⊗ ξ ∈ A.

Proof. For each v ∈ V , let ξ(v) denote the eigenvalue corresponding to v, so that ξ(v)w = B(ϕ)(v)w. Because B(ϕ)(v)w is linear in

v, so is ξ(v). Then ξ = ξiu
i ∈ V ∗. Therefore, B(ϕ)(·)w = w ⊗ ξ. In particular, the rank-one condition implies that

(5.5)
∑
λ≤µ

ϕλ Bλµ w = ξµw =
∑
λ≤µ

ξλ Bλµ w, ∀µ ≤ `.

This is the same expression as in (1.13), so by comparing recursively over µ = 1, 2, . . . , `, we see that ξλ = ϕλ for all λ, so

w ∈W1(ϕ) ⊂W−(ϕ). �

Lemma 5.4 deserves a warning: There may be multiple ξ over the same ϕ, for perhaps there are different w ∈W−(ϕ) admitting

different sequences of eigenvalues ξ%, for % > `, associated to the same ϕ. It is also not (yet) clear that a mutual eigenvector w exists

for every such ϕ.

Overall, it is clear that there is a some relationship between the eigenvalues of Bλi and the characteristic variety of an endovolutive

tableau A. This relationship is made precise for involutive tableaux using a result from [Gui68].

Theorem 5.6 (Guillemin normal form). Suppose that A is involutive. For every ϕ ∈ U∗ and v ∈ V , the restricted homomorphism

B(ϕ)(v)|W1(ϕ) is an endomorphism of W1(ϕ). Moreover, for all v, ṽ ∈ V ,

(5.7) [B(ϕ)(v),B(ϕ)(ṽ)]
∣∣∣
W1(ϕ)

= 0.

Compare Theorem 5.6 to Lemma 4.1 in [Gui68] and Proposition 6.3 in Chapter VIII of [BCG+90]. Theorem 5.6 is known as

Guillemin normal form because it implies that the family of homomorphisms B(ϕ)(·) can be placed in simultaneous Jordan normal

form on W1(ϕ). It is the “normal form” alluded to in Section 1(b). We defer the proof to Section 6 so we may first see its important

consequences.

Corollary 5.8. If A is involutive, then for each ϕ ∈ U∗, there exists some w satisfying the hypotheses of Lemma 5.4. That is, the

projection map Ξ→ U∗ is onto. In particular, if A is nontrivial and involutive, then Ξ is nonempty.

Proof. Because we are working over C, the commutativity condition (5.7) guarantees that common eigenvectors exist for

{B(ϕ)(v) : v ∈ V }. �

Lemma 5.9. Suppose that A is an involutive tableau. Then the map of projective varieties induced by Ξ→ U∗ is a finite branched

cover. In particular, we have the affine dimensions dim Ξ = dimU∗ = `.

Proof. Fix ϕ ∈ U∗. The set of ξ over ϕ is nonempty by Corollary 5.8. If it were true that the set of ξ projecting to a particular ϕ

were infinite, then the parameter ξi would take infinitely many values in some expression of the form

(5.10) det

(∑
λ

ϕλ Bλi −ξiI

)
= 0.

But, the matrix
∑
λ ϕλ Bλi ∈ End(W−

1 ) can have at most s1 eigenvalues. �

Here we arrive at an easy16 proof of the main theorem regarding the structure of Ξ.

Theorem 5.11. If A is involutive, then dim Ξ = `− 1 and deg Ξ = s`.

Proof. We work in endovolutive coordinates. From Lemma 5.9, we already know that dim Ξ = `− 1.

Fix a generic point ξ ∈ Ξ over ϕ ∈ U∗. We must determine the degree of the condition Cξ 6= 0. Note that Cξ must be a subvariety

of W1(ϕ)⊗ ξ, and W1(ϕ) is a linear subspace of W , so the degree of Ξ is the degree of some condition on W1(ϕ).

By Lemma 5.1 and (4.4), the condition that Cξ is nontrivial is precisely the condition that

(5.12) det

(∑
λ

ξλ Bλi −ξiI

)
= 0, ∀i.

16It is easy in the sense that we do not need to invoke the Riemann-Roch theorem, as we have the explicit polynomials of M in hand, and they are

recognizable as the familiar eigenvector equations.
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Since we may restrict our attention to W1(ϕ)⊗ ξ, only these terms contribute to the non-linear part of the ideal:

(5.13) det

(∑
λ

ξλ Bλ% −ξ%I

)
= 0, ∀% > `.

or, without coordinates,

(5.14) det (B(ξ)(v)− ξ(v)I) = 0, ∀v ∈ (U∗)⊥.

For a particular v, this is the characteristic polynomial of B(ξ)(v) as an endomorphism of W1(ϕ). By involutivity and Theorem 5.6,

all B(ξ)(v) for v ∈ (U∗)⊥ admit the same factorization type for their respective characteristic polynomials, so it does not matter

which v we consider. By definition, the characteristic polynomial of B(ξ)(v)|W1(ϕ) has degree dim W1(ϕ). Therefore, deg Ξ = s`
follows from Lemma 1.15. �

Theorems 5.6 and 5.11 provide a powerful interpretation of the form of an involutive tableau seen in Theorem 3.16 and Figure 3;

the first ` columns represent a projection of Ξ, as in Lemma 5.9, and the rank-one incidence correspondence in Figure 12 is precisely

the eigenvector condition on the appropriate subspaces. It is peculiar and interesting that these results were discovered in the

opposite order historically.

6. Results of Guillemin and Quillen

Guillemin’s proof of Theorem 5.6 made use of two results derived from Quillen’s thesis [Qui64]. In this section, we see how easy

these results become using Theorem 3.16. (Note that Theorem 3.16 and Theorem 5.6 are not equivalent. It is easy to construct

endovolutive tableaux that satisfy (5.7) but are not involutive.)

Recall the Spencer cohomology groups from Section 3(b). For any ϕ ∈ V ∗, wedging by ϕ gives a map W ⊗∧pV ∗ →W ⊗∧p+1V ∗.

This induces a map on the quotient spaces, Hp(A)→ Hp+1(A).

Theorem 6.1 (Quillen’s Exactness Theorem). Suppose A is an involutive tableau, and that ϕ 6∈ ΞA. Then the sequence of maps by

∧ϕ,

0→ A→ H1(A)→ H2(A)→ · · · → Hn(A)→ 0,

is exact.

In [Qui64], this theorem is proven using enormous commutative diagrams. In our context, with Theorem 3.16 in hand, we can

prove an easy version of Quillen’s result, in the form of Lemma 6.3.

Lemma 6.3 is a consequence of 6.2, which for us is an easy corollary of Theorem 3.16. This corollary is called Theorem A in

[Gui68], where it was proved using a large diagram chase using Quillen’s exactness theorem 6.1.

Corollary 6.2 (Quillen, Guillemin). If A is involutive, then A|U is involutive, and the natural map between prolongations

A(1) → (A|U )
(1)

is bijective.

Proof. The first part is an immediate consequence of Theorem 3.16, as the quadratic condition still holds if the range of indices

λ, µ, i, j is truncated at ` (or greater). In particular, the generators (πaµ)a≤sµ of A are preserved.

The second part is similarly immediate, using the proof of Theorem 3.16 given in [Smi15]: the contact relation πaµ = Zaµ,iu
i for

a ≤ sλ gives coordinates Zaµ,i to the prolongation A(1) ⊂ A⊗ V ∗, and the s1 + 2s2 + · · ·+ `s` independent generators are precisely

those Zaµ,λ with a ≤ sµ and λ ≤ µ ≤ `. Since they involve no indices i > `, these generators remain independent when the range of

indices is truncated at `. �

Now we come to our simplified version of Theorem 6.1. Compare Lemma 6.3 to the exact sequence (3.4)2 in [Gui68].

Lemma 6.3. Recall that Y ∗ is a complement to U∗ ⊂ V ∗, so that V ∗ = U∗ ⊕ Y ∗. For A involutive, the sequence

0→W ⊗ S2Y ∗ → H1 ⊗ Y ∗ δ→ H2

is exact.

Proof. This proof is just an explicit description of the maps in a basis and an application of Corollary 6.2. Let (ui) be a basis for

V ∗ such that (uλ) is a basis for U∗ and (u%) is a basis for Y ∗, using the index convention (1.8) from Section 1.

The sequence makes sense because we can split the Spencer sequence (3.11) as W ⊗ V ∗ = A⊕H1 by identifying the space H1

with {
∑
a>si

πai (za ⊗ ui)} ⊂W ⊗ V ∗, which is the space spanned by the unshaded entries in Figure 1. Using this identification, two

elements
∑
a>si

πai (za ⊗ ui) and
∑
a>si

π̂ai (za ⊗ ui) of W ⊗ V ∗ are equivalent in H1 if and only if πai − π̂ai =
∑
b≤sλ B

a,λ
i,b z

b
i for some

{zai : a ≤ si}, the shaded entries in Figure 1. In other words, the projection W ⊗ V ∗ → H1 is defined by (1.9), and the projection

W ⊗ V ∗ → A is defined by the projection onto the orange generator components in Figure 1, those πaλ with a ≤ sλ.

Since s% = 0 for all % > `, the inclusion W ⊗ Y ∗ ⊂W ⊗ V ∗ is an inclusion W ⊗ Y ∗ ⊂ H1. Hence, the inclusion is understood as

(6.4) W ⊗ S2Y ∗ ⊂ (W ⊗ Y ∗)⊗ Y ∗ ⊂ H1 ⊗ Y ∗.

An element of H1 ⊗ Y ∗ is written in W ⊗ V ∗ ⊗ Y ∗ as

(6.5) P =
∑
a>sλ

P aλ,ς(za ⊗ uλ ⊗ uς) +
∑
a>0

P a%,ς(za ⊗ u% ⊗ uς).

The image δ(H1 ⊗ Y ∗) in H2 is

(6.6) δ(H1 ⊗ V ∗) ⊂ δ(W ⊗ V ∗ ⊗ V ∗) ⊂W ⊗ ∧2V ∗,
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so δP ∈W ⊗ ∧2V ∗ is of the form

(6.7) δP =
∑
a>sλ

P aλ,ς(za ⊗ uλ ∧ uς) +
∑
a>0

1

2

(
P a%,ς − P aς,%

)
(za ⊗ u% ∧ uς).

Recall that H2 = W⊗∧2V ∗

δσ(A⊗V ∗) . So, δP ≡ 0 in H2 if and only if there is some T ∈ A⊗ V ∗ such that δσ(T ) = δ(P ) in W ⊗ ∧2V ∗.
Looking at (6.7), it is apparent that such T must have δσ(T |U ) = 0, as δ(P ) has no U∗∧U∗ terms. By involutivity and Corollary 6.2,

we consider the involutive tableau

(6.8) 0→ A|U →W ⊗ U∗ σ|U→ H1
U → 0

with prolongation

(6.9) 0→ (A|U )
(1) → A|U ⊗ U∗

δσ|U→ W ⊗ ∧2U∗ → H2
U → 0.

Therefore, T |U ∈ A|U ⊗ U∗ lies in the kernel of δσ|U , so T |U ∈ (A|U )
(1)

. Therefore, Corollary 6.2 tells us T ∈ A(1). That is,

δ(P ) ≡ 0 ∈ H2 if and only if δ(P ) = δσ(T ) = 0.

Therefore, δ(P ) ≡ 0 ∈ H2 if and only if P aλ,ς = 0 and P a%,ς = P aς,% on these index ranges. This occurs if and only if

P = P a%,ς(za ⊗ u% ⊗ uς), meaning P ∈W ⊗ S2Y ∗. �

We are ready to prove Theorem 5.6. The structure of the proof is identical to the original proof in [Gui68].

Proof of Theorem 5.6. Suppose that w ∈W1(ϕ), so that π = B(ϕ)(·)w = w⊗ϕ+J for some J ∈W ⊗Y ∗ with J% = Ja% za ∈W−(ϕ)

for all %. First, we must show that the span of the columns J% of J lies in W1(ϕ).

Consider the element −J⊗ϕ = −Ja%ϕλ(za⊗uλ⊗u%) ∈ H1⊗Y ∗. Because z⊗ϕ+J ∈ A, it must be that z⊗ϕ⊗ϕ ∈W ⊗V ∗⊗V ∗
represents the same point in H1 ⊗ Y ∗. So, we can compute

(6.10) − Ja%ϕλ(za ⊗ uλ ∧ u%) ≡ z ⊗ ϕ ∧ ϕ = 0 ∈ H2

By Corollary 6.2, there exists Q = Qa%,ς(za ⊗ uς ⊗ u%) ∈ W ⊗ S2Y ∗ such that −J ⊗ ϕ − Q ∈ A ⊗ Y ∗. That is, writing

Q% = Qa%,ς(za ⊗ uς) ∈W ⊗U∗, we have J% ⊗ϕ+Q% ∈ A for all %, meaning J% ∈W1(ϕ) for all %. Therefore, for any v ∈ V , we have

B(ϕ)(v)z = ϕ(v)z + J(v) ∈W1(ϕ).

Now, mapping again, B(ϕ)(·)J% = J% ⊗ϕ+Q%, so B(ϕ)(uς)J% = Q%,ς , which is already known to be symmetric in %, ς. Therefore,

B(ϕ)(ṽ) B(ϕ)(v)z = B(ϕ)(ṽ) (ϕ(v)z + J(v))

= ϕ(v) B(ϕ)(ṽ)z + u%(v) B(ϕ)(ṽ)J%

= ϕ(v) (ϕ(ṽ)z + J(ṽ)) + u%(v) (ϕ(ṽ)J% +Q%(ṽ))

= ϕ(v)ϕ(ṽ)z + ϕ(v)J(ṽ) + ϕ(ṽ)J(v) +Q(v, ṽ).

(6.11)

This is symmetric in v, ṽ, giving the commutativity condition (5.7) �

It is interesting to see the inversion of logic that happened here. In the original literature, the overall implications are

6.1→ 6.3→ 6.2→ 5.6.

But, the arguments here give the overall implication

3.16→ 6.2→ 6.3→ 5.6.

However, we can write a shorter proof of Theorem 5.6 that relies Theorem 3.16 more directly, avoiding the general results of

Quillen. For motivation, consider the following trivial corollary of Theorem 3.16 that is obtained by setting λ = µ:

Corollary 6.12. Under the assumptions of Theorem 3.16, B(uλ)(v) is an endomorphism of W−(uλ) such that for all v, ṽ ∈ (U∗)⊥,

[B(uλ)(v),B(uλ)(ṽ)] = 0.

Alternate Proof of Theorem 5.6. Fix ϕ ∈ U∗, and suppose that w ∈W1(ϕ). We must verify that all maps B(ϕ)(v) preserve W1(ϕ)

and that they commute. Note that the definition of W1(ϕ) in Equation 1.14 depends on the choice of subspace U∗ but not on its

basis, so we may verify these conditions using any basis we like.

First a trivial case: if it happens that ϕ ∈ Ξ ∩ U∗, then B(ϕ)(v)w = ϕ(v)w ∈W1(ϕ) is a rescaling, and it is immediate that

[B(ϕ)(v),B(ϕ)(ṽ)] = 0.

Otherwise, we have ϕ 6∈ Ξ. Then we may choose a regular basis of V ∗ in which ϕ = u1. Moreover, we may use that basis to

construct an endovolutive basis of W . By Corollary 6.12, it suffices to prove in this basis that W1(u1) is preserved by every B(u1)(v).

Write B(ϕ)(·)w = w ⊗ u1 + J , and examine (1.13) on a column J% of J . For each µ = 1, . . . , `, we must verify

(6.13) 0 =
(
B1
µ−δ1µI

)
J% =

(
B1
µ−δ1µI

)
B1
% w =

(
B1
µ B1

%−δ1µ B1
%

)
w

If µ = 1, then this is immediately 0, since B1
1 = Is1 .

If µ 6= 1, then we are checking B1
µ B1

% w. Note that B1
µ w = 0, since B(ϕ)(·)w = w ⊗ ϕ+ J . Moreover, by Theorem 3.16, we have

(6.14) 0 =
(
B1
µ B1

%−B1
% B1

µ

)a
b
wb =

(
B1
µ B1

%

)a
b
wb

for a > sµ. Therefore, B1
µ B1

% lies in W−(µ). On the other hand, note that the output of B1
µ lies in W+

µ by the construction of the

maps Bλµ from the reduced symbol in Section 1(c). Combining these, we see that B1
µ B1

% w lies in W−
µ ∩W+

µ = 0.

Hence, the space W1(ϕ) is preserved by B(ϕ)(v) for all v. By Corollary 6.12, they commute. �
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On the theoretical side, it would be interesting to see how many of the hard classical theorems in the subject can be re-proven with

elementary techniques. (Existing references such as [BCG+90] present elementary proofs only in the case of rectangular tableaux.)

Specifically, the proof of Lemma 6.3 suggests an elementary proof of Quillen’s exactness theorem. The other hard theorem is

the integrability of the characteristic variety, and a proof of that theorem using Guillemin’s original formulation is the subject of

[GQS70]. That result was applied immediately to study primitive Lie pseudogroups.

7. Prolongation

How does the characteristic scheme change under prolongation? The short answer is that it does not!

Recall that A(1) is a tableau within A⊗ V ∗. An element of A(1) is P ∈ A⊗ V ∗. Using any bases for V,W,A, we may write P as

P ai,jza ⊗ ui ⊗ uj , with the additional condition that P ai,j = P aj,i from (3.5). Let C(1) denote the rank-one elements of A(1), and let

Ξ(1) denote its projection to V ∗, as in Section 4(b).

This does not depend on endovolutivity or involutivity.

Theorem 7.1. If π ⊗ ξ ∈ C(1), then π = w ⊗ ξ ∈ C for some w ∈ kerσξ . Conversely, if w ⊗ ξ ∈ C, then (w ⊗ ξ)⊗ ξ ∈ C(1). In

particular, Ξ ∼= Ξ(1) as schemes.

Proof. Suppose that π ⊗ ξ ∈ C(1) for some π ∈ A and ξ ∈ V ∗. That is, P ∈ A(1) and P = π ⊗ ξ, so P ai,j = πai ξj , and πai ξj = πaj ξi
for all a, i, j.

Let λ be the minimum index such that ξλ 6= 0. Then πaλξi = πai ξλ, so column i of (πai ) is a multiple—namely ξi/ξλ—of column λ

for all i. Therefore, (πai ) is rank-one, and there is some w with π = w ⊗ ξ. The converse is immediate. �

Remark 7.2. Theorem 7.1 is sometimes used as a method for computing the characteristic variety, as follows: Given a tableau (πai )

whose entries might depend on e ∈M (1), consider (ξi) 7→ (πai ξj − πaj ξi) as a map V ∗ →W ⊗∧2V ∗; that is, a map from Cn to Cr(
n
2).

For a general point in ξ ∈ V ∗, this map has rank at least 1. Its rank falls to 0 if and only if ξ ∈ Ξ. But, I don’t recommend it. If

you have (πai ) in hand and want to compute 2× 2 minors of something, you might as well compute the 2× 2 minors of (πai ) itself!

8. Characteristic Sheaf

Suppose that I tell you I am thinking of an r × r complex matrix. I tell you the dimension of the vector space as well as the

number of generalized eigenspaces and the dimension of each. Perhaps I even give you some relationships among the eigenvalues.

Then, I ask you some questions about the matrix as a map. (In fact, virtually every question in an undergraduate linear algebra

class is a variation of this game.) The only coordinate-invariant questions that you would be unable to answer are those that require

the eigenvalues themselves. This is the utility of Jordan normal form.

The ultimate conclusion of the preceding sections is that the situation for differential systems is quite similar. The characteristic

sheaf M knows the dimensions n, r, (s1, . . . , sn), as well as all of the dimensions and relationships among the mutual eigenspaces of

the various symbol maps. It therefore also knows on what subspaces the symbol maps fail to commute. Expressed as the rank-one

incidence correspondence, it even knows algebraic relationships among the sequences of eigenvalues (which we call ξ). Moreover, it

does not care about prolongation. In summary, M (or C) knows everything important about an abstract tableau A.

If this formal perspective is appealing, then one might as well dispense with matrices, bases, and differential forms and instead

study M directly, with modern algebraic tools such as [Eis05].

Consider M as an ideal in C∞(M)[u1, . . . , un], and consider its free resolution. The Hilbert syzygy theorem states that there is a

finite free resolution that is characterized by its Hilbert polynomial hM(d). Of course, Theorem 5.11 is reading the leading term of

hM(d)!

One might ask how the involutivity of A can be detected as an algebraic property of M. The answer is tied to Castelnuovo–

Mumford regularity, which measures the growth of the Hilbert polynomial. This is equivalent to the Cartan characters in Cartan’s

test!

While it is not necessarily a useful computational tool versus exterior forms and tableaux, this perspective allows a broader view

of the techniques in PDE analysis, and it suggests that a detailed further progess in the field will come through an emphasis on

invariant algebraic techniques.

For more on this perspective, see [Mal03], [BCG+90, Chapter VIII], and the notes by Mark Green from the 2013 conference New

Directions in Exterior Differential Systems in Estes Park, Colorado.

Part III. Eikonal Systems

In Part II, we studied the characteristic sheaf as defined over M (1) ⊂ Grn(TM). In this part, we turn our attention to the

characteristic sheaf as pulled back to an ordinary integral manifold ι : N →M . This is where the meaning of Ξ as “directions with

an ambiguous initial value problem” has clear implications for the structure of particular solutions of a differential equation.

9. General Eikonal Systems

First, let us consider the general notion of “eikonal equations” of a projective variety, without specific regard to the characteristic

variety.

Consider a smooth manifold N of dimension n. The implicit function theorem says that a smooth hypersurface H ⊂ N is defined

locally by a smooth function f : N → R, where TxH = ker df . By the Frobenius theorem, this is equivalent to having a local smooth

section ϕ of T ∗N such that dϕ ≡ 0 mod ϕ, for then ϕ is a rescaling of some df .
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We can also look at the Frobenius theorem from the perspective of Cartan–Kähler theory17, as in Theorem 3.15. To make a

smooth function f : N → R or a local section ϕ of T ∗N , consider the jet space J1(N,R), which is isomorphic to the bundle T ∗N ×R.

Jet space is an open neighborhood (or local linearization) of Grn(N ×R) with local coordinates (xi, pi, y) = (x1, . . . , xn, p1, . . . , pn, y)

and a contact system J generated by Υ = du− pidyi and dΥ, as in Section 2(e). Any n-dimensional integral manifold of J on which

dx1 ∧ · · · ∧ dxn 6= 0 corresponds to a function y = f(x1, . . . , xn) with pi = ∂f
∂xi , so we may take ϕ = df = ∂f

∂xi dx
i. It is easy to see

that the exterior differential system J on T ∗N × R has no torsion and has a “free” tableau with characters s1 = s2 = · · · = sn = 1.

That is, integral manifolds are parametrized by 1 function of n variables—hardly a surprise!

Now, consider a projective subbundle ΣN ⊂ PT ∗N , meaning it is defined smoothly by homogeneous functions in the local fiber

variables (pi) of T ∗N . We want to know whether we can find hypersurfaces H for which df ∈ ΣN everywhere. Specifically, we want

like a theorem like this:

Theorem 9.1. Suppose that the eikonal system (defined below) of ΣN is involutive. Then for any smooth point ϕ ∈ ΣN,x, there is

a smooth hypersurface H ⊂ N such that (TxH)⊥ = ϕ and such that (Tx̃H)⊥ lies in the smooth locus of ΣN,x̃ for all x̃ ∈ H .

Because the section ϕ is not chosen a priori, this condition is difficult to interpret using the original Frobenius formulation of

hypersurfaces; however, the formulation on T ∗N × R is well-suited to this theorem. Consider the inclusion ψ : ΣN × R→ J1(N,R).

The eikonal system of Σ is the exterior differential system E(ΣN ) = ψ∗(J ) on ΣN × R; that is, E(ΣN ) is generated by ψ∗(Υ) and

ψ∗(dΥ) and has independence condition dx1 ∧ · · · ∧ dxn 6= 0. An integral manifold of E(ΣN ) corresponds to a hypersurface in N

whose tangent space in annihilated by a section of ΣN .

We do not prove involutivity of E(ΣN ) in any significant case here; it is typically extremely deep and difficult, and references are

provided below. However, the situation in Theorem 9.1 has several interesting consequences and interpretations.

Corollary 9.2. Let `− 1 denote the projective dimension of ΣN . In the situation of Theorem 9.1, such hypersurfaces depend on `

functions of 1 variable.

Proof. Fix ϕ ∈ ΣN,x. We work locally (actually, microlocally!) near ϕ, so we may assume N is open, connected, and simply

connected, and that T ∗N = N × Rn. Because ΣN is smooth of affine dimension ` in T ∗N , we may choose local coordinates

(q1, . . . , qn) on each fiber of T ∗N near such that ΣN is defined by q`+1 = · · · = qn = 0 near ϕ.

For each λ = 1, . . . , `, let σλ ∈ ΣN,x denote the 1-form specified as (0, . . . , 0, qλ, 0, . . . 0) in these coordinates. By Theorem 9.1,

there is a local hypersurface Hλ ⊂ N and a corresponding local function xλ such that dxλ ∼ σλ. Complete x1, . . . , x` to a local

coordinate system (xi) on N , and let pi be the corresponding “derivative” coordinates pi = ∂
∂xi on the fiber of T ∗N . Note that

pi(dx
`) = δλi by construction, so ΣN is defined by p`+1 = · · · = pn = 0. (Note that the open neighborhood of T ∗N around ϕ may

have shrunk during this process.)

Therefore, the contact system on T ∗M ×R is generated in a neighborhood of ϕ by Υ = dy− pidxi, which pulls back to ΣN ×R as

ψ∗(ΣN ) = dy − pλdxλ.

The corresponding tableau is the space of 1×` with entries dpλ for λ = 1, . . . , `, so its Cartan characters are s1 = s2 = · · · = s` = 1. �

It is easy to adapt the previous proof to the following corollary, which is useful for constructing coordinates in some situations, as

in [Smi14].

Corollary 9.3. For any ΣN , let 〈ΣN 〉 denote its linear span, which is itself a projective subbundle of PT ∗N . If E(ΣN ) is involutive,

then E(〈ΣN 〉) is involutive.

The eikonal system has several interpretations that tie together various branches of geometry. Compare Sections 9(a) and 9(b) to

[BCG+90, V§3(vi)].

9(a). Eikonal Systems as Lagrangian Geometry. The R term in T ∗N ×R plays little role for the eikonal system E(NΣN ). It

is there merely to make obvious the relationship between the eikonal equations and hypersurfaces.

Instead, consider the symplectic manifold T ∗N with symplectic 2-form dΥ, which is expressed in local coordinates as dΥ = dpi∧dxi

according to Darboux’s theorem. The Lagrangian Grassmannian LG(N) is the bundle over T ∗N whose fiber is all the Legendrian

n-planes

(9.4) LGϕ(N) = {e ∈ Grn(TϕT
∗N) : dΥ|e = 0}.

Each fiber is isomorphic to the homogeneous space LG(n, 2n), which is the variety of n-planes in R[x1, . . . , xn, p1, . . . pn] on which

dpi ∧ dxi = 0. If we consider a plane e ∈ LG(n, 2n) for which dx1 ∧ · · · ∧ dxn 6= 0, then dpi = Pi,j(e)dx
i on e with Pi,j = Pj,i.

Hence, the non-vertical open neighborhood of LG(n, 2n) is identified with the space of symmetric matrices, Sym2(Rn).

Suppose the affine subvariety ΣN ⊂ T ∗N is defined smoothly by homogeneous functions in the local fiber variables (pi) of T ∗N .

From this perspective, the eikonal system E(ΣN ) is measuring the intersection of Grn(TϕΣN ) with LGϕ(N) for all ϕ ∈ ΣN .

Corollary 9.5. The eikonal system E(ΣN ) is involutive if and only if there are local coordinates of T ∗N near ϕ ∈ ΣN in which

the non-vertical open set in Grn(TϕΣN ) ∩ LGϕ(N) is described as the n × n symmetric matrices Pi,j(e) that vanish outside the

upper-left `× ` part.

Proof. If the eikonal system E(ΣN ) is involutive, then we may construct coordinates as in Corollary 9.2 such that ΣN is defined by

p% = 0 for all % > `, so TϕΣN is defined by dp% = 0 for all % > `. In such coordinates, the open neighborhood of the Lagrangian

Grassmannian takes the block form

(9.6)

(
dpλ
dp%

)
|e =

(
Pλ,µ(e) Pλ,ς(e)

P%,µ(e) P%,ς(e)

)(
dxµ

dxς

)
|e, such that Pi,j = Pj,i,

17Although Theorem 3.15 applies as stated only in the analytic category, it can obviously be extended to the smooth category in this case. This sort of

extension is explored in Section 11.
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using our index convention (1.8) from Section 1. The condition e ∈ TΣN implies dp% = 0, so the lower blocks are zero. The matrix

is symmetric, so the upper-right block is zero.

Conversely, suppose such coordinates exist. Then TΣN satisfies the closed 1-forms dp% = 0, and the dimensions match, so ΣN
satisfies p% = constant. Since the equations defining ΣN are homogeneous, it must be p% = 0. Using these coordinates for T ∗N × R
and J yields ψ∗(Υ) = dy − pλdxλ, as in Corollary 9.2, which is involutive with the correct Cartan characters and gives the desired

hypersurfaces in Theorem 9.1. �

Compare this to Proposition 3.22 in [BCG+90, Chapter V]. For more symplectic and Lagrangian geometry, see [Bry93].

9(b). Eikonal Systems as Poisson Brackets. If T ∗N describes the physical state of a system, a function F : T ∗N → R is called

an observable [SW86]. The Poisson bracket of observables is the operation in local coordinates

{F,G} =
∑
i

(
∂F

∂pi

∂G

∂xi
− ∂G

∂pi

∂F

∂xi

)
=
∑
i

dF ∧ dG

(
∂

∂pi
,
∂

∂xi

)(9.7)

The Poisson bracket plays a fundamental in Hamiltonian mechanics and the relationship between symmetries and conservation laws

in physics. This is because (9.7) is a Lie bracket on C∞(T ∗M). (See [Bry93] for details.)

Suppose that O is some set of observables that is closed under linear combinations, suppose that {F,G} ∈ O for all F,G ∈ O.

Then, O is a Lie subalgebra of C∞(T ∗M) with respect to the Poisson bracket.

Recall that the affine subvariety ΣN ⊂ T ∗N is defined smoothly by observables that take the form of homogeneous functions in

the local fiber variables (pi) of T ∗N . For convenience, let us make the additional assumption that the homogeneous functions are

algebraic of degree d in (pi), so that ΣN is defined smoothly near ϕ ∈ ΣN by a set of equations in multi-index form

(9.8) 0 = F %(x, p) =
∑
|I|=d

f%,I(x)pI , for % = `+ 1, . . . , n.

Corollary 9.9. Let O denote the module in S = C∞(N)[p1, . . . , pn] generated by (9.8), The eikonal system E(ΣN ) is involutive if

and only if {O,O} ⊂ O; that is, E(ΣN ) is involutive if and only if the module O is a Lie algebra with respect to the Poisson bracket.

A proof—which does not depend on the polynomial form (9.8)—can be derived from Corollary 9.5 along with the observation

that the Poisson bracket can be defined in a coordinate-free way as the operator such that

(9.10) {F,G}(dΥ)∧n = ndG ∧ dG ∧ (dΥ)∧(n−1).

Finally, note that equations of the form (9.8) appear in analysis as systems of homogeneous first-order PDEs on u : Rn → R of

the form

(9.11) 0 = F %(x, p) =
∑
|I|=d

f%,I(x)
∂u

∂xI
, for % = `+ 1, . . . , n.

One famous example is the system of characteristics for the wave equation,

(9.12) 0 = −(ut)
2 + c2((ux)2 + (uy)2).

10. Involutivity of the Characteristic Variety

We would like to apply the entire discussion from Section 9 to the case where ΣN is the characteristic variety, but first we must

establish that Ξ is sensible in T ∗N .

Suppose that ι : N →M is a connected ordinary integral manifold of an involutive exterior differential system (M, I), and that

M (1) is the smooth component of Varn(I) containing ι(1)(N), as in Section 3.

Fix x ∈ N , and suppose ι(x) = p ∈M and ι(1)(x) = e ∈M (1). For ξ ∈ Ξe ⊂ V ∗e , we can consider the pullback ι(1)∗(ξ) ∈ PT ∗xN⊗C.

In a basis (ηi) of T ∗xN , we can write a representative as ξ = ξiω
i for coefficients ξi ∈ C, so that ι(1)∗(ξ) = ξiη

i ∈ PT ∗N ⊗ C. In this

sense, we can pull back the characteristic variety—as a set—to N .

More precisely, recall that Ξ has degree s` and affine dimension `, but it is a scheme defined by the characteristic sheaf M. For

any local section (ui) of the coframe bundle Fγ∗ →M (1), we can write the characteristic sheaf M as a homogeneous ideal in the

module C∞(M (1))[u1, . . . , un]. At each e = ι(1)(x) ⊂ M (1), the coframe (ui) is just a basis of e; therefore, we obtain a basis for

TxN of the form uN,i =
(
ι
(1)
∗

)−1
(ui). To simplify notation, we ignore the subscript N . That is, in some neighborhood of x, the

section (ui) of F∗N is well-defined. Moreover the stalks of the sheaf C∞(M (1)) can be pulled back, as ι(1)∗(f) is well-defined for

all f defined in a neighborhood of e = ι(1)(x). Therefore, we can pull back both the coefficients and the coordinates to define the

homogeneous ideal MN in C∞(N)[u1, . . . , un]. Let ΞN ⊂ T ∗N be the scheme defined by MN .

Now, the entire discussion from Section 9 applies where ΣN is the smooth locus ΞoN of ΞN . We know additionally that ΞN takes

the polynomial form (9.8) as derived from (5.14), so it has degree s` and dimension `− 1 at smooth points, as a complex projective

variety.

Theorem 10.1 (Guillemin–Quillen–Sternberg). Suppose that N is an ordinary integral manifold of an involutive exterior differential

system I with Cartan character `. The eikonal system of the smooth locus of the (complex) characteristic variety, E(ΞoN ), is

involutive. At smooth points in ΞN , the characteristic hypersurfaces are parametrized by 1 function of ` variables.
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Note that our definition of ΞN is the complex characteristic variety. This theorem is called the “integrability of characteristics.”

Cartan demonstrated several examples of this phenomenon in [Car11]. The proof appears in [GQS70], where a major step is the

application of Theorem 5.6. Hence, this result appears to rely in an essential way on the facets of the characteristic variety seen in

Part II.

The converse is not true; it is easy to write down non-involutive exterior differential systems for which E(ΞN ) is involutive.

However, in [Gab81], Ofer Gabber proved a more general form of Theorem 10.1 that removes practically all of the technical

assumptions and recalls the interpretation of Section 9(b).

Theorem 10.2 (Gabber). Let R be a filtered ring whose graded ring gr(R) is a Noetherian commutative algebra over Q. Let M be

a finitely generated R-module. Then {
√
M,
√
M} ⊂

√
M .

The previous case occurs when the filtered ring is Ω•(N)⊗ C for an “abstract” integral manifold N , and the finitely-generated

R-module M is the characteristic sheaf MN . By Hilbert’s Nullstellensatz, the radical
√
M plays the role of the module O of functions

defining ΞN from Section 9(b).

From the general discussion of eikonal systems surrounding Theorem 9.1, the interpretation of these theorems is apparent:

Corollary 10.3. Suppose that N is an ordinary integral manifold of an involutive exterior differential system I with Cartan

character `. Then N admits a local—possibly complex—coordinate system (x1, . . . xn) such that dx1, · · · dx` ∈ ΞN .

In [Smi14], the linear span of the characteristic variety, 〈ΞN 〉 is studied in comparison to the Cauchy retraction space, g⊥N .

Suppose that the affine dimension of 〈ΞN 〉 is L and that the affine dimension g⊥N is ν. These spaces are nested, so ` ≤ L ≤ ν ≤ n.

Corollary 10.4. Suppose that N is an ordinary integral manifold of an involutive exterior differential system I with Cartan

character `. Then N admits a local—possibly complex—coordinate system (x1, . . . xn) such that dx1, . . .dx` ∈ ΞN , such that

dx`+1, . . .dxL ∈ 〈ΞN 〉, and such that dxL+1, . . . ,dxν ∈ g⊥N .

Corollary 10.4 is a simple result, but its proof relies on building a coframe of N in which the nilpotent parts of the commuting

symbol maps BλI are identified clearly; that is, it depends in an essential way on Theorem 10.1 as well as 3.16. The key point is that

it reinforces the following dogma:

Remark 10.5 (General Dogma of the Characteristic Variety). An exterior differential system (M, I) is a geometric object over M ,

meaning that its key properties are coordinate-invariant. Knowing this geometry is equivalent to knowing the rank-one variety

and characteristic scheme, which are prolongation-invariant. Moreover, the geometry of an EDS/PDE imposes a geometry on

its solutions, ι : N → M , and this imposition is dictated by the rank-one variety and characteristic scheme. Therefore, exterior

differential systems can be classified up to equivalence as “parametrized families of manifolds N with associated characteristic

geometry.”

This is not a theorem; it is an attitude.

11. Yang’s Hyperbolicity Criterion

One of the great frustrations of the Cartan–Kähler theorem is that it relies on the Cauchy–Kowalevski theorem, so it applies only

in the analytic category. One can see its failure in the smooth category in [Lew57]. However, this frustration has been escaped in

some special cases18 by exploiting the structure of Ξ.

For example, suppose that (M, I) is involutive over C∞ and that Ξ = ∅. Then ` = 0, so the tableau A is the trivial (irrelevant)

subspace of W ⊗ V ∗. The prolonged system I(1) on M (1) is Frobenius, and M (1) is merely a copy of M whose fiber is the unique

element is an integrable distribution. That integrable distribution is merely the Cauchy retraction space g, and it must have been

that I = g⊥. The flow-box theorem foliates M by solutions in the smooth category. (Actually, in the Lipschitz category, by standard

ODE theory!) If N is a leaf of this foliation, then removing Cauchy retractions on the original exterior differential system (M, I)

yields the exterior differential system (N, 0).

Or, for example, suppose that (M, I) is involutive over C∞ and that Ξ = V ∗ with (s1, s2, . . . , sn) = (r, r, . . . , r). Then, the tableau

A is the total space W ⊗ V ∗. Therefore, M (1) is an open domain in Grn(TM), so I = 0, and there is no condition whatsoever19 on

integral manifolds ι : N → M ; however, the prolongation ι(1) : N → M (1) would have to satisfy the contact ideal, forcing some

regularity on N . We studied this EDS in Section 2.

A less trivial special case is presented in [Yan87], which is the subject of this section. As it happens, the attempt to understand

[Yan87] in the context of [BCG+90, Chapter VIII] was the inspiration for computing the details shown in [Smi15] and the entire

approach of these notes.

A tableau A is called determined if s1 = s2 = · · · = sn−1 = r and sn = 0; that is, s = (n − 1)r, so t = r, and H1(A) ∼= W .

Cartan’s test shows that a determined tableaux is involutive, so we may assume that A is written in endovolutive form as in

Theorem 3.16, so the only nontrivial symbol endomorphisms in (1.11) are Bλλ = Ir×r and Bλn for λ = 1, . . . , n− 1. The quadratic

involutivity condition is trivial.

Lemma 11.1. Suppose A is determined and written in endovolutive bases. Then

(11.2) kerσϕ = ker
(
ϕλ Bλn−ϕnI

)
.

In particular, ξ ∈ Ξ if and only if ξn is an eigenvalue of ξλ Bλn.

18If we take the broadest possible interpretation of Remark 10.5 to heart, then any escape from analyticity ought to arise from the structure of Ξ.

However, the reader is cautioned again that a dogma is not a theorem.
19 The most extreme and amusing exploitations of the flexibility of Grn(TM) come from the homotopy principle [Gro86, EM02].
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Proof. From Part II, we know w ⊗ ξ ∈ A if and only if B(ξ)(v)w = ξ(v)w for all v. Therefore, we compute in our endovolutive basis

ξ(v)w = B(ξ)(v)w

= ξλv
i Bλi (w)

= (ξλv
λ)w + ξλv

n Bλn w

= (ξ(v)− ξnvn)w + ξλv
n Bλn w

(11.3)

That is, ξnw = ξλ Bλn w. �

Let us identify H1(A) with W and use our endovolutive basis of W for both. Then σϕ =
(
ϕλ Bλn−ϕnI

)
for any ϕ ∈ V ∗.

Suppose that e′ is a real hyperplane in e such that (e′) ⊥ ⊗C = ϕ ∈ V ∗ and ϕ 6∈ Ξ. Then σϕ : W → H1(A) is an isomorphism.

Definition 11.4. Suppose e′ is a real hyperplane in e corresponding to the real covector ϕ = (e′) ⊥∈ Pe∗. The real hyperplane is

called space-like if:

(i) ϕ⊗ C 6∈ Ξe, and

(ii) For any η ∈ Pe∗, there is a real basis of W in which (σϕ)−1(ση) is real and diagonal, and

(iii) that choice of basis is a smooth function of [η] ∈ e∗/ϕ = (e′)∗.

A determined symbol A is called determined hyperbolic if V has a real space-like hyperplane.

Using the expressions above for σϕ, it is straightforward to verify that this definition holds on a given determined tableau.

Definition 11.5. A tableau is called hyperbolic if V admits a flag given by a basis (u1, . . . , un) of V ∗ such that the sequential

initial value problem from
〈
vi, . . . , vn

〉⊥
to
〈
vi+1, . . . , vn

〉⊥
has a hyperbolic determined tableau.

Theorem 11.6 (Yang). Theorem 3.15 applies in the smooth category, if A is hyperbolic.

The proof proceeds by replacing the Cauchy–Kowalevski initial-value problem with the Cauchy initial-value problem for determined

first-order quasilinear hyperbolic PDEs. See [Yan87] and Appendix A of [Kam89] for more details.

Clearly the definition of hyperbolic depends on the geometry of Ξ and the symbol maps Bλi ; however, to my knowledge no one

has succeeded in writing down the explicit condition on Bλi or C or Ξ for general hyperbolicity. Hence, Yang’s condition is not

yet available to computer algebra systems. If that can be accomplished, it means we can identify a subvariety of the moduli of

involutive tableaux—as in Section 3(d)—that admit solutions in the smooth category.

One well-understood special case is when ` = 1, so Ξe contains s1 real points (with multiplicity). If the number of distinct points

is sufficiently large (greater than n), then this is the situation for hyperbolic systems of conservation laws, as in [Tsa91]. The eikonal

system is rigid, so each solution is foliated by s1 characteristic hypersurfaces. Multiplicity corresponds to nilpotent pieces of the

generalized eigenspaces of the symbol endomorphisms B1
i .

12. Open Problems and Future Directions

Our perspective here has been simple-minded, to gain intuition of Ξ and E(Ξ) as rapidly as possible. The articles [Smi14]

and [Smi14] are founded on this perspective, but reveal additional detail of the structures discussed here. For more modern and

sophisticated treatment, please see [Mal03], [KL07], and [Car09]. Additionally, Chapters V–VIII of [BCG+90] contain significantly

more results than we have summarized here.

To conclude, here are some interesting questions which—to my present knowledge—are open subjects of ongoing research.

(i) Moduli of Involutive Tableaux. Section 3(d) demonstrates a first step toward understanding the variety of involutive

tableaux. Within this variety, can we identify the sub-variety of hyperbolic tableaux?, of elliptic tableaux? of integrable

systems? Where do the Lewy example fall in this variety? If there is any organizing geometry behind the impenetrable

jungle of involutive PDEs, this is where we should look.

(ii) Global Integrability of the Characteristic Variety. If A is involutive, then the system E(ΞN ) is involutive on an ordinary

integral manifold, N . However, is there a clear sense in which Ξ is involutive over M (1) itself? That is, consider the EDS on

M (1) generated by adding a smooth section ξ to I(1). Under what circumstances is this involutive? Can Gabber’s theorem

be adopted to this case?

(iii) Can Gabber’s theorem provide integrability results for PDEs with low regularity?

(iv) The Prolongation Theorem. Does prolongation always work, if we remove the regularity assumptions on M (1) and consider

the many components of Varn(Varn(· · · (I) · · · ))?
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ables indépendantes, Bulletin de la Société Mathématique de France 39 (1911), 352–443. Available at http://www.numdam.org/item?id=

BSMF{_}1911{_}{_}39{_}{_}352{_}1.

[Cle] J. N. Clelland, From Frenet to Cartan : The Method of Moving Frames, American Mathematical Society, Graduate Texts in Mathematics.

[Eis05] D. Eisenbud, The geometry of syzygies, Graduate Texts in Mathematics 229, Springer-Verlag, New York, 2005.

[EM02] Y. Eliashberg and N. Mishachev, Introduction to the -Principle, Graduate Studies in Mathematics 48, American Mathematical Society,

Providence, Rhode Island, jun 2002. Available at http://www.ams.org/gsm/048.

[FHK09] E. V. Ferapontov, L. Hadjikos, and K. R. Khusnutdinova, Integrable Equations of the Dispersionless Hirota type and Hypersurfaces in the

Lagrangian Grassmannian, International Mathematics Research Notices 2010 (2009), 496–535. Available at http://imrn.oxfordjournals.

org/cgi/content/abstract/2010/3/496.

[Gab81] O. Gabber, The Integrability of the Characteristic Variety, American Journal of Mathematics 103 (1981), 445. Available at http://www.jstor.

org/stable/2374101.

[Gar67] R. B. Gardner, Invariants of Pfaffian systems, Transactions of the American Mathematical Society 126 (1967), 514–514. Available at

http://www.ams.org/jourcgi/jour-getitem?pii=S0002-9947-1967-0211352-5.

[Gar89] , The Method of Equivalence and Its Applications, Society for Industrial and Applied Mathematics, jan 1989. Available at http:

//epubs.siam.org/doi/book/10.1137/1.9781611970135.

[Ger61] M. Gerstenhaber, On Dominance and Varieties of Commuting Matrices, The Annals of Mathematics 73 (1961), 324. Available at http:

//www.jstor.org/stable/1970336?origin=crossref.

[Gol67] H. Goldschmidt, Existence Theorems for Analytic Linear Partial Differential Equations, The Annals of Mathematics 86 (1967), 246 – 270.

Available at http://www.jstor.org/stable/1970689.

[Gro86] M. Gromov, Partial Differential Relations, Springer Berlin Heidelberg, Berlin, Heidelberg, 1986. Available at http://link.springer.com/10.

1007/978-3-662-02267-2.

[Gui68] V. Guillemin, Some algebraic results concerning the characteristics of overdetermined partial differential equations, American Journal of

Mathematics (1968), 270–284. Available at http://www.jstor.org/stable/10.2307/2373436.

[GK68] V. Guillemin and M. Kuranishi, Some Algebraic Results Concerning Involutive Subspaces, American Journal of Mathematics 90 (1968), 1307.

Available at http://www.jstor.org/stable/2373301?origin=crossref.

[GQS66] V. W. Guillemin, D. Quillen, and S. Sternberg, The Classification of the Complex Primitive Infinite Pseudogroups, Proceedings of the

National Academy of Sciences of the United States of America 55 (1966), 687–690. Available at http://www.jstor.org/stable/57452.

[GQS70] , The integrability of characteristics, Communications on Pure and Applied Mathematics 23 (1970), 39–77. Available at http:

//doi.wiley.com/10.1002/cpa.3160230103.

[GS00] R. M. Guralnick and B. Sethuraman, Commuting pairs and triples of matrices and related varieties, Linear Algebra and its Applications

310 (2000), 139–148. Available at http://linkinghub.elsevier.com/retrieve/pii/S0024379500000653.

[Har92] J. Harris, Algebraic Geometry : A first course, Springer Graduate Texts in Mathematics, 1992.

[Har13] , Parameter Spaces in Algebraic Geometry, in Samuel Eilenberg Lecture Series, Columbia University, New York, NY, 2013. Available at

https://www.youtube.com/watch?v={_}m-cWF3DY9w{&}list=PLj6jTBBj-5B{_}QE35IEQgLkkEct0Dk8GG6.

[IL03] T. A. Ivey and J. M. Landsberg, Cartan for Beginners : Differential Geometry via Moving Frames and Exterior Differential Systems, 35,

American Mathematical Society, 2003.

[Kam89] N. Kamran, Contributions to the study of the equivalence problem of Élie Cartan and its applications to partial and ordinary differential
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