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To many young students, linear maps seem ab-
surdly complicated; the only way to access their prop-
erties is through intricate and unintuitive procedures
that appear to solve specific problems, but never get
at the question “what are linear equations? How
can I organize them?” If it’s hard to remember this
feeling, it’s because you already know Jordan nor-
mal form, a framework to understand all the essential
properties of a linear map without worrying about its
original presentation in a basis.

To many working mathematicians differential equa-
tions seem absurdly complicated; the only way to
access their properties is through intricate and unin-
tuitive procedures that appear to solve specific prob-
lems, but never get at the question “what are differ-
ential equations? How can I organize them?”

This is an introduction to Guillemin normal form,
one of the most beautiful and overlooked structures in
20th century mathematics, which may offer a frame-
work to understand many of the essential properties
of differential equations. It reveals a profound con-
nection between algebra, geometry, and analysis.

1. Generalizing Jordan

Let W be an r-dimensional complex vector space,
so End(W ) is the space of linear maps or r × r ma-
trices on W . For any matrix X ∈ End(W ), we can
apply Jordan form, decomposing W according to the
Jordan blocks of X. If 0 6= c ∈ C, then the matrix
cX yields the same Jordan decomposition of W as X.
Thus, Jordan form can be interpreted as a classifica-
tion of lines in End(W ) or points in PEnd(W ). We
can generalize both lines and points.

Lines in End(W ) can be generalized to linear sub-
spaces. Say X,Y ∈ End(W ). If X and Y are arbi-
trary, then they may have completely different Jor-
dan forms. But, recall that X and Y admit compat-
ible Jordan blocks if and only if XY = Y X. Thus,
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to generalize Jordan form, we want to consider s-
dimensional linear subspaces g ⊂ End(W ) of com-
muting maps. The moduli space of these commu-
tative matrix algebras is already of interest to alge-
braists, but to study PDEs, we need varying families
of them.

Points in PEnd(W ) can be generalized to varieties.
Let Ξ be an algebraic variety defined by a idealM on
some space V ∗, and where each ξ ∈ Ξ (being careful
with components and multiplicity) corresponds to a
subspace g(ξ) ⊂ End(W ). Moreover, we insist that
each g(ξ) is commutative, allowing simultaneous Jor-
dan decomposition for all X ∈ g(ξ).

Therefore, we have a purely algebraic object, con-
structed from the familiar ideas of endomorphism,
eigenvector, and variety. If you’re comfortable with
these topics, one more generalization is possible: Given
a manifold or variety N , we can suppose that M is
a sheaf over N , so thatM and Ξ vary with points in
N . For this article, let’s call these spaces and maps{

0→ g(ξ)→ End(W )→ g(ξ)⊥ → 0

ξ ∈ Ξ = Var(M) ⊂ V ∗, over N

a “commutative characteristic system.”

2. Differential Equations

When studying differential equations, the primary
question is “Can we solve the initial-value problem?
In how many ways?” That is, we want to parame-
trize the moduli of solutions. This question is solved
when one can establish involutivity, a formal prop-
erty whose lengthy definition (see [3]) says that one
can integrate the variables one-by-one without need-
ing higher derivatives. The Cartan–Kähler theorem:
“If a system of PDEs is involutive, then it admits a
family of series solutions depending smoothly on ar-
bitrary choice of s` functions of ` variables.” The
numbers ` and s` are computed while checking for
involutivity and provide a Hilbert polynomial.

The Cartan–Kähler theorem has a partial converse,
the Cartan–Kuranishi prolongation theorem: “If a
system of PDEs admits a smooth family of solutions,
then some finite prolongation of the system is in-
volutive.” Prolongation is the familiar process in
which one includes derivatives as new variables in
a system of PDEs. For example, y = y′′ becomes
{p = y′, y = p′}. This process is canonical and
coordinate-free when interpreted on the Grassmann
using differential forms.
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Therefore, when constructing solutions of PDEs,
we usually restrict our attention to involutive PDEs.
(Actually, these theorems apply only in the analytic
category and a few other specialized cases, as they
require the Cauchy–Kowalevski theorem to produce a
sequence of power series. Since the systems described
here are algebraic, this limitation is moot.)

Suppose you have a system of PDEs in n indepen-
dent and r dependent variables. Complexifying and
writing V = Cn and W = Cr, the tableau of the
PDE is the space A ⊂ W ⊗ V ∗ of all partial deriva-
tive Jacobian matrices that appear in solutions. The
annihilator of A is given by a linear map called the
symbol of the PDE, σ:

0→ A→W ⊗ V ∗ σ→ A⊥ → 0.

Solutions to the initial-value problem are controlled
by the characteristic variety, Ξ ⊂ V ∗, which is de-
fined by the property that the infinitesimal initial-
value problem of the PDE is under-determined on the
hyperplane ξ⊥ ⊂ V . The geometry of Ξ is the source
of the phenomena of elliptic, hyperbolic, and para-
bolic systems in 2 dimensions, but it is much wilder
for larger n.

Guillemin studied these tableaux and characteris-
tics using modern algebra [1]. For each ξ ∈ Ξ, one
can construct a map Bξ : V → End(W ) using the
components of the symbol map σ. Omitting details,
it can be written something like

Bξ(v) : w 7→ σ(w ⊗ ξ) · v.
Let g(ξ) = Bξ(V ) ⊂ End(W ). Among Guillemin’s
results is “Suppose that the system of PDEs in invo-
lutive. For each ξ ∈ Ξ, the algebra g(ξ) is commuta-
tive.” That is, the Bξ(v) admit a simultaneous Jor-
dan form that varies with ξ ∈ Ξ, and one can choose
clever bases for V , W , and A so that the involutive
PDE looks as nice as possible. This is Guillemin nor-
mal form, a sheafy, varying generalization of Jordan
form. In our language, an involutive PDE yields a
commutative characteristic system.1

3. Meaning of Moduli

Is this algebraic perspective useful? Jordan form
reveals structures of linear maps; likewise, Guillemin
form reveals structures of differential equations. For
example: An involutive PDE has constant coefficients
if N is a point. An involutive PDE is an ODE if Ξ is
trivial. An involutive PDE is elliptic if Ξ is strictly

1Interestingly, the converse is not immediately clear. To

my knowledge, no one has studied which abstract varieties can
be characteristic varieties, or whether there is some additional

condition imposed on those varieties arising from PDEs.

complex. But, we should hope for more. Here are
three fundamental questions in PDE analysis whose
answers should be algebraic:

3.1. Involutivity. A completely open question is to
describe the moduli space of involutive PDEs; that is,
among all PDEs, describe those that are prolonged
enough to admit families of power-series solutions.
Even in the case of PDEs with constant coefficients
and a fixed Ξ, the problem is very difficult beyond 2
or 3 variables. As the moduli of commutative alge-
bras becomes better understood, this generalization
becomes more practical.

3.2. Hyperbolicity. The most severe limitation of
Cartan–Kähler theory is its reliance on analyticity,
but in the special case of hyperbolic systems, one can
solve PDEs over R in the smooth category. However,
the technical definition of hyperbolic systems is very
difficult to verify in general, so the hyperbolic theory
has been applied only in a handful of examples.

3.3. Integrability. The word “integrability” means
many things to many people, usually focused on a
small set of favorite wave-like PDEs and techniques.
A more general notion, applicable in all dimensions,
is needed greatly. Integrability phenomena and spe-
cial coordinate systems for PDEs frequently involve
the existence of families of solutions that intersect
maximally with the characteristic variety and related
Veronese and secant varieties, so it should be de-
tectable via this sort of algebraic perspective.

One might hope that these three questions are re-
lated tightly: A decomposition of the variety of in-
volutive tableaux over R should yield hyperbolic sys-
tems as a subvariety, and integrable systems might
appear as a further subvariety of those hyperbolic sys-
tems. The investigation of these three ideals promises
fascinating interactions between algebraic geometry,
differential geometry, and analysis.

Like Jordan form prompted representation theory
for finite-dimensional Lie groups, Guillemin form al-
lowed progress in the theory of infinite-dimensional
Lie pseudogroups [2]. More broadly, the application
of Jordan form yielded major parts of functional anal-
ysis, quantum mechanics, statistics, and many other
disciplines. The mind boggles at the possible appli-
cations of a comprehensive algebraic classification of
involutive PDEs.
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